
SYS-CON
PUBLICATIONS

Feature: JavaMail Ian Moraes
Framework for developing
Internet-based e-mail client applications 8

Cover Story: Creating Newsfeeds Using Java Applets John Keogh
Make the Internet more relevant, and give
your customers better—faster—service 18

Feature: What Is JavaMail? Rachel Gollub
By now you might be asking yourself... 32

Case History: Enterprise Java at Syracuse UniversityFrank Gates
Distributed applications written in Java using the
EJB model to build reliable and scalable systems 44

Widget Factory: A Return to Reflection Jim Crafton
Adding advanced features to the CodeDocument
class à la Borland’s CodeInsight 50

SYS-CON Radio: JavaOne
Interviews with Grant Wood & Daniel Berg, and Martin Hardee 64

Product Review: SQL 2000 v7.5 Jim Milbery
Pervasive Software’s latest version of its
ubiquitous database engine and software development kit 76

Java COM Volume:4 Issue:10, October1999

The World’s Leading Java Resource

TM

WHAT IS JAVAMAIL?

From the Editor
Holy Wars

by Sean Rhody pg. 5

Guest Editorial
Presenting Java
by Ajit Sagar pg. 7

Straight Talking
What an ‘L’ of a Month
by Alan Williamson pg. 14

E-Java
Palming Java

by Ajit Sagar pg. 28

IMHO
Java OOP Means

OODBMS—Not
by Bruce Scott pg. 94

EJB Home
The Business

Advantage of EJB
by Jason Westra pg. 58

CORBA Corner
What’s Coming
in CORBA 3?

by Jon Siegel pg. 68

RETAILERS PLEASE DISPLAY
UNTIL DECEMBER 31, 1999

Guaranteed Lowest Prices...

sllaCCBDJ

HTML or Applet

Browser
EJB

Application
Server

SIS
Interface
Server

SIS
Interface
Server

SIS
Interface
Server

SIS
Interface
Server

Web
Server

SIS
Interface
Manager

Student
Information

System

Database
Server

HTML EJB
Calls

Java COM

2 OCTOBER 1999

BEA
www.weblogic.beasys.com

3OCTOBER 1999

Java COM

Protoview
www.protoview.com

Java COM

4 OCTOBER 1999

Sun
Microsystems

www.sun.com/service/suned/java2

5OCTOBER 1999

Java COM

SEAN RHODY, EDITOR-IN-CHIEF

W
hen I was a teenager, my parents taught me never to argue about
sex, politics and religion. Later on I also learned that it’s never a
good idea to argue with drunks. Now I find myself in the unenvi-
able position of having to step into the middle of a “religious”
debate.

In the July issue of JDJ (Vol. 4, issue 7) we ran a feature story regarding the use of Java with
DCOM. It touched off a great deal of debate, both pro and con, concerning the suitability of
publishing this article in a magazine like Java Developer’s Journal.

Arguments against had a couple of themes. One main theme was anything that comes out
of Redmond is bad, and there are Java-based alternatives to everything Microsoft. JDJ, as the
standard bearer for Java, should have nothing to do with the “Evil Empire.” A second, some-
what more reasonable theme was that Microsoft won’t be supporting Java 2, so their technol-
ogy is going away.

On the pro side, a number of readers felt this article was right on the mark. They’re working
in an environment where interoperability comes before portability, and this article provided
information they needed to get the job done.

Rather than arguing with either of these sides, I thought I’d simply state where JDJ stands
on this issue and explain its position. As the editor-in-chief of Java Developer’s Jour-
nal, I look for a variety of articles. I look for high-level articles that discuss
the principles of Java programming, technically detailed arti-
cles that explain useful Java techniques, and prod-
uct-related ones that discuss the integration of Java
with a particular tool.

That being said, Java Developer’s Journal will not
restrict the content of the magazine based on who cre-
ates the technology being discussed. We have regular
columns devoted to what I think are the mainstream
interests of the language, and they evolve as the times
change and the language grows. I try to mix in a variety of
topics while sticking to the editorial calendar we set every
year. My policy is that JDJ will be inclusive rather than
exclusive. When we plan the magazine, we clearly realize
that every reader won’t read every article. That’s fine.
Our goal is to reach a broad audience every month
with enough variety and content that they continue to
read.

There will be the occasional article regarding Microsoft
technologies. But there won’t be a regular column regarding
Microsoft, nor will we be turning the magazine into Microsoft Java Journal. Our
focus will remain, as always, on all Java technologies. If you’re not interested in topics con-
cerning Microsoft, flip past it to the next article.

I know this may set off another flurry of discussions. I think that’s good – I prefer to see peo-
ple express their opinions instead of just sitting back and staring at you. If you want to send
me e-mail regarding this, please do so. And please keep reading.

Holy Wars

F R O M T H E E D I T O R

sean@sys-con.com

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, JOHN OLSON, GEORGE PAOLINI,
KIM POLESE, SEAN RHODY, RICK ROSS,

AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
PRODUCTION EDITOR: CHERYL VAN SISE

ASSISTANT EDITOR: NANCY VALENTINE
EDITORIAL CONSULTANT: SCOTT DAVISON

TECHNICAL EDITOR: BAHADIR KARUV
PRODUCT REVIEW EDITOR: ED ZEBROWSKI

INDUSTRY NEWS EDITOR: ALAN WILLIAMSON
E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
JIM CRAFTON, FRANK GATES, RACHEL GOLLUB, JOHN KEOGH,

JIM MILBERY, IAN MORAES, SEAN RHODY, AJIT SAGAR,
BRUCE SCOTT, JON SIEGEL, JASON WESTRA, ALAN WILLIAMSON

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PUBLISHER, PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN

VICE PRESIDENT, MARKETING: CARMEN GONZALEZ
CHIEF FINANCIAL OFFICER: IGNACIO ARELLANO
ACCOUNTING MANAGER: ELI HOROWITZ
CIRCULATION MANAGER. MARY ANN MCBRIDE

ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA
MEGAN RING

JDJSTORE.COM: JACLYN REDMOND
ADVERTISING ASSISTANT: CHRISTINE RUSSELL

GRAPHIC DESIGNER: ROBIN GROVES
GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN

SYS-CON RADIO EDITOR: CHAD SITLER
WEBMASTER: ROBERT DIAMOND

WEB SERVICES INTERN: DIGANT B. DAVE
CUSTOMER SERVICE: SIAN O’GORMAN

ANN MARIE MILILLO
ONLINE CUSTOMER SERVICE: AMANDA MOSKOWITZ

E D I T O R I A L O F F I C E S
SYS-CON PUBLICATIONS, INC.

39 E. CENTRAL AVE., PEARL RIVER, NY 10965
TELEPHONE: 914 735-7300 FAX: 914 735-6547

SUBSCRIBE@SYS-CON.COM

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)
is published monthly (12 times a year) for $49.00 by

SYS-CON Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.
Periodicals Postage rates are paid at

Pearl River, NY 10965 and additional mailing offices.
POSTMASTER: Send address changes to:

JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
39 E. Central Ave., Pearl River, NY 10965-2306.

© C O P Y R I G H T
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

739 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

AUTHOR BIO
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a principal consultant with Computer Sciences Corporation,

where he specializes in application architecture – particularly distributed systems.

Java COM

6 OCTOBER 1999

NuMega
www.compuware.com/numega

7OCTOBER 1999

Java COM

Soft
Wired

www.javamessaging.com/ibus

I
n the fast-changing world of Internet-based technologies, perception is every-
thing. Is a business solution implemented in a particular technology truly cross-
platform? Is it scalable? Is it robust? Is it easy to use? Does it do what it set out to
do? Most times the answers to these questions are based on the perception of the
functionality offered by the application. In a distributed application a large part

of the burden of providing the perception falls on the designers of the user inter-
face. One of Java’s salient features – platform interoperability – is achieved via the
perception of user interface portability.

I say “perception of portability” because seamless cross-platform portability is
paradoxical by its very definition. Let’s take a minute to consider what porting

applications between platforms really means. Porting applications between platform A and platform B
inherently implies that platforms are incompatible. What this boils down to is that the assembly code
generated by an application on platform A will be different from the assembly code generated by the
same application on platform B. The executable is different. The combination of hardware, operating
system and compilers used by the application is different for the two execution environments. Indeed,
it’s this very difference that allows different vendors to tout their value-adds for the industry. And all this
is good because it promotes healthy competition.

The Ultimate Thin Client
Sun Microsystems’ “the network is the computer” message has been consistent right from the beginning.

Since Java was introduced in the marketplace, Sun has touted it as the technology that will make this a real-
ity. For the network to be the computer, the burden of installing and running the intelligent piece of software
applications needs to shift application functionality to tiers that are different from the client user interface
tier. In other words, the intelligence and complexity in a solution need to move out of the presentation tier
and be buried in different tiers of a distributed application. The presentation tier should be concerned sole-
ly with presenting data served up by the next tier. The UI client should be as thin as possible.

The catch, however, is that the same application should be able to offer the same functionality via dif-
ferent clients. And the world of clients has morphed from dumb vt100 terminals to PCs sitting on every
user’s desk to PDAs, cell phones, set-top boxes and pagers. Java offers core technologies that support dis-
tributed networking like Jini as well as different flavors of the Java platform for distributing the applica-
tion across various tiers of a distributed application. In theory, the same content can be presented across
all these devices. As a result, porting the user interface across the various applications should be seam-
less. All the devices run Java. As long as the code is pure Java, we should be able to drag class files from a
PC and drop them into a 3COM palm.

In reality, it’s not as simple as that. Any portable code has to adhere to the least common denomina-
tor of features that can be provided across the different display units. This defeats the purpose of the dif-
ferent devices, each of which provides unique features in the way it presents the data. This uniqueness
manifests itself in the user interface, which is the user’s window into the device. The more realistic
approach is to leverage the least common denominator of functionality as much as possible, while keep-
ing in mind that parts of the user interface won’t be portable across devices and platforms. The challenge
is to decide how much of the functionality needs to be provided in the user interface. The thin-client
model may still exist; however, the data served up by the next tier will be different for different devices.

Wait a minute.…Does this mean I can keep my user interface device/platform dumb and drive the
user interface from the other tiers of the distributed application? That would be neat. Well, as the saying
goes, if it’s too good to be true, it probably is. A big assumption here is that the features offered by a par-
ticular UI device or platform can be optimally leveraged by the “server.” This is certainly not true. In fact,
the different levels of sophistication of the user interfaces translate to the value-add provided by the ven-
dor. The minute you start mixing and matching unique features offered by the device with the least com-
mon denominator offered by Java, guess what? Your client just gained weight.

Java Clients vs Web Clients
Today it behooves Java-based computing solutions to offer several types of clients. One is a Java client

(fat client) that takes advantage of specific strengths of an application and presents them in the user
interface. This is implemented as a Java application. The second type is a thinner client that uses Java
applets to add dynamism to a Web UI on the client. A third type of client is the pure Web client that
achieves dynamism via scripting languages. The latter two types have at least one thing in common: they
serve up HTML (or XML), i.e., they run in browsers. One of the advantages of the Web clients is that they
achieve some level of UI device portability. However, they inherit the issues related to browser portabil-
ity. Hence, the burden of UI configuration shifts from Java code to scripting code. The point is that you
still have to provide unique implementations to accommodate your environment’s idiosyncrasies.

There’s no silver bullet. Designing user interfaces is hard. Creating the right balance of responsibility
across the different tiers of distributed applications is hard. However, as long as the appropriate percep-
tion is maintained, the end user should be unaware of these complexities. And abstracting complexity is
the reason we use software to create business solutions.

AUTHOR BIO
Ajit Sagar, a member of the technical staff at i2 Technologies in Dallas,Texas, holds an MS in computer science and a BS in electrical engineering.
He focuses on Web-based e-commerce applications and architectures. Ajit is a Sun-certified Java programmer with nine years of programming
experience, including two and a half in Java.

WRITTEN BY AJIT SAGAR

G U E S T E D I T O R I A L

ajit@sys-con.com

Presenting Java

E-mail functionality is an important system requirement in areas such as
e-commerce, customer care, work-flow management and unified messag-
ing. In addition, some application architectures may need to support not
only standard mail protocols but also proprietary ones. If you’re charged
with the task of developing an e-mail client application in Java, you have a
number of architectural and design options: building your own services
layer to support multiple mail protocols, purchasing third-party compo-
nents that provide e-mail features or using JavaSoft’s JavaMail framework.

This article focuses on the JavaMail framework for developing Inter-
net-based e-mail client applications. The JavaMail API shields applica-
tion developers from implementation details of specific mail protocols
by providing a layer of abstraction designed to support current e-mail
standards and any future enhancements. JavaMail increases a develop-
er’s productivity by allowing the developer to focus on the business logic
of an application rather than on mail protocol implementation. It pro-
vides a platform- and protocol-independent means of adding e-mail
client features to your applications. JavaMail version 1.1 is a standard
Java extension and requires JDK/JRE 1.1.x or higher.

Overview of Internet Mail Protocols
Before getting into the details of JavaMail, a quick overview of some

messaging terms and Internet e-mail protocols (IMAP, POP, SMTP) is in
order. A message is described in terms of a header and content. A mes-
sage header comprises information such as sender (from), recipient (to),
and message ID (a unique message identifier). A message’s content is the
actual message body and can comprise multiple parts in the form of text
and attachments, as shown in Figure 1.

An e-mail client is used to transfer messages to and from an e-mail
server, which is responsible for sending and receiving e-mail messages
across the Internet. These servers store a user’s messages either perma-
nently or until retrieved by an e-mail client.

8 OCTOBER 1999

Java COM

WRITTEN BY IAN MORAES

FIGURE 1 Structure of an e-mail message

J D J F E A T U R E

Framework
for developing
Internet-based
e-mail client
applications

To develop an e-mail client you need to deal with protocols for send-
ing and receiving messages. As shown in Figure 2, the common protocol
for sending Internet e-mail messages is SMTP (Simple Mail Transfer Pro-
tocol). The original SMTP specification limited messages to a certain line
length and allowed only 7-bit ASCII characters. The MIME (Multipur-
pose Internet Mail Extensions) specification builds on SMTP by remov-
ing the maximum line length for messages and allowing new types of
content (e.g., images, binary files) to be included in e-mail messages.
The MIME specification overcomes these limitations by defining addi-
tional fields in a message header to describe new types of content and
message structure. MIME defines the content-type header to specify the
type and subtype of message content. For example, a message with an
HTML attachment would have a content-type header set to “text/html”.
SMTP and MIME are typically used together to send Internet e-mail
messages.

Two types of protocols are used to retrieve messages from Internet
mail servers: POP3 (Post Office Protocol 3) and IMAP4 (Internet Mes-
sage Access Protocol 4). Although POP3 is more widely used than
IMAP4, the latter has a number of advantages. First, IMAP supports
multiple folders on a remote mail server whereas POP3 supports only
the Inbox folder. Second, IMAP supports message status flags (e.g., indi-
cates whether a message has been previously seen); POP3 doesn’t.
These types of protocol features are important considerations in
designing your application.

JavaMail provides implementations of SMTP, IMAP4 and POP3. For
more information on these Internet mail protocols, you can consult the
pertinent RFCs.

JavaMail Architecture
Now that you have a basic understanding of Internet mail terms, we can

begin to discuss the JavaMail architecture. As shown in Figure 3, the archi-
tecture can be described in terms of three main layers. JavaMail’s layered
architecture allows clients to use the JavaMail API with different message
access protocols (POP3, IMAP4) and message transport protocols (SMTP).

The top layer is the application layer that uses the JavaMail API. The
second layer is the JavaMail API that defines a set of abstract classes and
interfaces for supporting e-mail client functionality. This is the layer that
frees a developer from having to deal with protocol-specific complexi-
ties. JavaMail provides concrete subclasses of these abstract classes for
Internet mail. The JavaMail API layer depends on concrete implementa-
tions of protocols.

The implementation layer forms the third layer of the JavaMail archi-
tecture. Since JavaMail is protocol independent, it’s up to service
providers to implement specific message access and message transfer
protocols. Service provider implementations play a role similar to that of
JDBC drivers. A provider registry allows service providers to register their
protocol implementations to be used by JavaMail APIs. The JavaMail
Web site has more information on third-party service providers.

JavaBeans Activation Framework
JavaMail interacts with message content through an intermediate

layer called the JavaBeans Activation Framework (JAF), part of the Glas-
gow specification (a future release of the JavaBeans component model
specification). In terms of dealing with e-mail messages, JAF provides a
uniform way of determining the type of a message’s content and encap-
sulating access to it. The JAF is implemented as a standard Java exten-
sion. Sun provides a royalty-free implementation of JAF that requires
JDK 1.1.x or higher.

JAF is used to get and set a message’s text and attachments. JavaMail
provides convenient methods to interact with JAF. For example,
MimeMessage’s setText() method can be used to set a string as a mes-
sage’s content with a MIME type of “text/plain.” Another example is
MimeMessage’s getContent() method, which returns a message’s con-
tent as a Java object by invoking methods on JAF’s DataHandler class.

JAF can also be used to view e-mail attachments such as a text file
(.txt) or an image (.gif) by instantiating a JavaBean that supports a par-
ticular command (e.g., view) on a specific type of message content. As

9OCTOBER 1999

Java COM

FIGURE 2 Protocols for sending and getting e-mail messages

FIGURE 3 Overview of JavaMail architecture

Java COM

10 OCTOBER 1999

shown below, the JAF DataSource object, which encapsulates the attach-
ment, is used to create a DataHandler object. The DataHandler object
uses a CommandInfo object to retrieve the pertinent JavaBean that can
be used to perform a specific operation on an attachment. The JavaBean
component can then be added to a frame, as shown in the code snippet
below. Currently, reference implementations of JAF-aware JavaBeans are
available to view text, GIF and JPEG files. CommandInfo, DataSource
and DataHandler are all JAF classes.

// file name represents the attachment
FileDataSource attachFds = new FileDataSource(attachmentFilename);
DataHandler dh = new DataHandler(attachFds);
CommandInfo viewCi = dh.getCommand("view");
Frame attachmentWindow = new Frame("View Attachment");
// add the bean to view the attachment to the main window
attachmentWindow.add((Component)dh.getBean(viewCi));

Examples Using JavaMail
You now have a basic overview of the JavaMail architecture and JAF so

we can discuss the main JavaMail classes and methods needed to sup-
port an e-mail client. Table 1 describes some fundamental JavaMail
classes.

To illustrate the use of JavaMail in an e-mail client application, I’ll
consider four major use cases: configuring a connection to e-mail
servers, sending a message, getting messages from an e-mail server and
deleting messages.

Configuring a Connection to an e-Mail Server
Before you can send or receive messages from your mail server, you

need to establish a mail session between the mail client and the remote
mail servers. Mail user properties are used to initiate a connection to
mail servers. The Session class can manage the mail user properties used
by the JavaMail API.

// Setting mail user properties
mailProperties = new Properties();
mailProperties.put("mail.transport.protocol", "smtp");
mailProperties.put("mail.smtp.host", "someSmtpHost");

The Session object is a factory for Store and Transport objects. A Ses-
sion and Store object can be obtained as follows:

// Get a Session object
Session session = Session.getDefaultInstance(mailProperties, null);
// Get a Store object
Store store = session.getStore();

One issue to consider as you design the application architecture of
your e-mail client is the dependency between your business layer and
JavaMail. To reduce tight coupling between your application’s business
layer and the JavaMail subsystem, the Facade design pattern can be
used. For example, mail user configuration can be passed into a Facade
(singleton) to assemble the appropriate JavaMail objects (Session, Trans-
port and Store) and perform any other initialization (e.g., security). As a
result, dependencies between your business layer classes and the Java-
Mail subsystem are reduced, and your business layer can use a simpler
interface such as MailFacade.configure(Properties p).

A use case pertaining to e-mail server connectivity is support for “dis-
connected e-mail operation,” which involves maintaining e-mail mes-
sage stores on both the remote server and a local client, performing
operations on both stores, and then being able to synchronize these two
stores. JavaSoft’s IMAP provider implements interfaces that can be used
to support disconnected operation.

At the time of this writing, secure messaging (e.g., support for
S/MIME) is currently missing from JavaMail. S/MIME builds security on
top of MIME to provide secure electronic messaging for Internet mail in
the form of message authentication and data security. Although not
available in JavaMail, it can be obtained from a third party. The JavaMail
Web site has more information on this and other third-party Web sites.

Sending e-Mail Messages
Once a mail session has been established, an e-mail message can be

created and sent. First, a MimeMessage object needs to be constructed.
Then, as shown below, the message object is initialized with the recipi-
ent’s e-mail address(es), the subject of the message and the message
text. The message is then sent using the Transport object.

// Create new message
Message msg = new MimeMessage(session);
// Initialize the message
msg.setFrom(new InternetAddress(senderEmailAddress));
msg.setRecipients(Message.RecipientType.TO,InternetAddress.parse
(recipientEmail,false));

msg.setSubject(subject);
msg.setText(messageText);
Transport.send(msg);

JavaMail can also be used for developing mail-enabled servlets (e.g.,
using a browser to send e-mail to a support center). An important archi-
tectural consideration is reuse of the mail functionality in your business
layer by both Web and Java clients. This can be accomplished by using a
layered architecture and appropriate design patterns. For example, a
simple mail Facade that shields a client from the JavaMail API can be
used by both a Java client and a servlet to send an e-mail messge; a client
needs to provide the view and controller components (Model-View-
Controller design pattern) of the application.

When sending messages, users assume that e-mail clients support
address books, but JavaMail currently does not. However, the JavaMail
API doesn’t preclude you from developing your own mechanism (e.g.,
using XML – for implementing local address books or using JNDI to
access an LDAP-enabled server for global address book features).

CLASS NAME DESCRIPTION
SESSION This javax.mail class represents a mail session and serves as

the main entry point for the JavaMail API. The Session class
controls access to the Store and Transport objects.

TRANSPORT This javax.mail class represents a transport agent that sends a
message to its recipients using a specific message transfer
protocol. Transport is implemented by a service provider.

STORE This javax.mail class defines a message store (a database and
an access protocol) for a set of message folders. Folder objects
are accessed through a Store object. Store is implemented by a
service provider.

FOLDER This javax.mail class comprises messages and subfolders in a
treelike structure. It also defines methods to retrieve and delete
messages. Message objects are accessed through a Folder
object. Folder is implemented by a service provider.

MESSAGE This javax.mail class models an e-mail message. A Message
object interacts with its content using JAF. The javax.mail.inter-
net.MimeMessage class extends Message to represent a MIME
message. Message is implemented by a service provider.

ADDRESS This javax.mail class models an e-mail address. The
javax.mail.internet.InternetAddress class extends Address to
support Internet e-mail addresses.

DATAHANDLER Message content is represented as a javax.activation.DataHand-
ler class that wraps around the actual data. The DataHandler
class provides an interface to the JAF.

TABLE 1 Important classes and interfaces when using JavaMail

11OCTOBER 1999

Java COM

EnterpriseSoft
www.enterprisesoft.com

Java COM

12 OCTOBER 1999

Getting e-Mail Messages
After you’ve successfully established a mail session, an e-mail client

can retrieve your e-mail messages. To retrieve your messages use the
Session object to obtain a Store object, which can be used to obtain the
Inbox folder, as shown below.

// Opening the Inbox Folder
store = session.getStore();
store.connect();
Folder folder = store.getFolder("INBOX");
folder.open(Folder.READ_WRITE);

After a folder has been successfully opened,
it’s used to get message totals and the mes-
sages, as illustrated in the following code snip-
pet.

// Getting message totals and messages
from a folder
int totalMessages = folder.getMessage-
Count();
Message[] msgs = folder.getMessages();

Note that the Message objects returned from
the getMessages() method call are designed to
be lightweight objects. For example, the Mes-
sage objects returned could comprise only
message header details. Retrieval of the actual
message content is deferred until the message
content is actually used. Thus the getMes-
sages() method isn’t designed to be a resource-
intensive operation.

A typical e-mail client first displays a sum-
mary of messages in the form of header details
such as sender (from), recipients (to), subject
and sent date. A summary line for each mes-
sage can be obtained as follows.

Address[] from = msgs[i].getFrom();
Address[] to = msgs[i].getRecipients(Mes-
sage.RecipientType.TO;
String subject = msgs[i].getSubject();
Date d = msgs[i].getSentDate();

After viewing the message summary, a user typically decides to view
the actual message content in the form of text and/or attachments. Now
we’re ready to get a message’s content, which can be retrieved in the
form of an object. The retrieved object depends on the type of content.
If the content is a message with multiple attachments, a Multipart object
(a container of BodyPart objects) is returned. If the Part’s content is text,
then a simple String object is returned. To retrieve a message’s content,
you can invoke Part’s getContent() method, as illustrated below. Note
that Part is an interface implemented by Message and BodyPart classes.

Object o = part.getContent();
If (o instanceof String) {
// content is text

} else if (o instanceof Multipart) {
// recursively iterate over container's contents to retrieve attachments
} else if (o instanceof Message) {
// message content could be a message itself

}

You’ve now seen how messages are retrieved using JavaMail. If your
application supports both IMAP and POP, you may need to develop dif-
ferent algorithms to download messages, depending on your particular
use case and performance requirements. For example, when developing

applications for use with low bit-rate clients using POP (which doesn’t
maintain flags to indicate unread messages), downloading all messages
each time becomes a performance issue. Thus you may need an algo-
rithm that uses provider-specific methods to prevent a redownload of
messages. Depending on your requirements, other algorithms may be
needed.

Each of these different download algorithms can be encapsulated as
Strategy classes (Strategy design pattern) that share a common interface.
A Strategy Factory can return strategy objects that can be used to down-
load messages, depending on particular user configurations. This

approach allows you to switch from one
download algorithm to another, depending
on the user configuration, and avoid having
to use protocol-specific conditional state-
ments. For more information on the Strategy
and other design patterns, consult Design
Patterns by Gamma et al. (1995).

When you download messages from a
server, a feature that’s available in some pop-
ular e-mail clients is an Inbox Assistant to
process incoming messages (e.g., delete mes-
sages based on user-specified rules). Current-
ly, JavaMail doesn’t provide direct support for
features such as automated message filtering.

Deleting e-Mail Messages
A standard use case for e-mail clients is

deleting a message. Using JavaMail, deleting
messages from a folder is a simple two-step
process. First, messages are marked for
deletion. Those messages that have been
marked are then deleted from a folder by
either explicitly invoking a Folder’s
expunge() method or closing a folder with
the expunge parameter of the close()
method set to true.

// Set delete message flag
message.setFlag(Flags.Flag.DELETED,
true);
// Delete marked messages from folder
folder.close(true);

Conclusion
This short introduction should help you use JavaMail 1.1 to develop an e-

mail client application. JavaMail is a relatively new framework that will
inevitably continue to mature and evolve. Nevertheless, it can be used to rapid-
ly develop an e-mail client application using a higher-level API without having
to perform the arduous task of implementing specific mail protocols and
developing an architectural infrastructure to support multiple protocols. You
can obtain more information on JavaMail/JAF, including sample programs for
sending and retrieving e-mail messages, from the references listed below.

Resources
JavaMail: www.javasoft.com/products/javamail/index.html
JavaBeans Activation Framework:
www.javasoft.com/beans/glasgow/jaf.html
Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented Software.

AUTHOR BIO
Ian Moraes, Ph.D., is a principal engineer at Glenayre Electronics, where he works on the architecture and
design of a unified messaging system. Ian has developed client/server systems for the telecommunications
and financial services industries.

imoraes@atlanta.glenayre.com

JavaMail is a

relatively new

framework that

will inevitably

continue

to mature

and evolve

‘‘

’’

13OCTOBER 1999

Java COM

Unify
www.ewavecommerce.com

Java COM

From IV drips and rejected usernames/passwords to…Neil Diamond (?)

14 OCTOBER 1999

WRITTEN BY
ALAN WILLIAMSON

What an ‘L’ of a month!

W
hat a month this one has been! Life has this wonderful way
of letting you know that no matter what you’re feeling at
any given moment, you just can’t predict what’s going to
be round the next corner. One of our chaps is at this pre-
cise moment lying flat on his back, bored senseless, in our
local hospital. It all began last weekend.

S T R A I G H T T A L K I N G

Murray was having a quiet weekend –
not doing much, just relaxing. He climbs
into bed on Sunday evening with a wee
nagging pain in his stomach. By the time
Monday morning rolled round he was
feeling a pain never before felt and the
doctor was called immediately. Doctor
then called an ambulance, and within five
hours Murray was on an operating table
having his ruptured appendix removed.

In a very short space of time poor
Murray’s world was completely turned
round. All plans he had, all plans we
had, are on hold for a number of weeks
until he’s back on his feet again. Poor
bugger. I don’t envy his position at all,
complete with a drip into his arm. I have
to admit to being a bit of a wimp with
regard to this sort of thing. Needles and
blood don’t really work for me. I’m the
sort of person that can nearly pass out
watching “ER,” and as far as I’m con-
cerned nurses who have to deal with this
sort of thing daily are pure angels. And if
all that isn’t enough, no e-mail access!
The man is in hell! I think we should
spearhead a campaign to have hospitals
linked up to the Internet with at least
64K of bandwidth to each bed.

One thing about hospitals and the
whole general health thing, it certainly
focuses your mind. With us all going in
on a daily basis we are more thankful for
our own state of health, and now even
more determined to try and maintain a
general state of good health. However,
we’ve been having some rather interest-
ing conversations regarding all the soft-
ware that must be running throughout
the hospital. In the ward in which Mur-
ray is laid up is a vast array of devices
that are continually flashing, reading,
monitoring, alerting, whatever.

Let’s imagine that the world is the
utopia we Java developers believe it will
be one day in the fact that Java has
found a home in many of these applica-
tion areas. Assume for the moment that

Java is the underlying software running
within a medical monitoring tool. Now,
given that, let’s pretend something goes
wrong. Since this is all make-believe so
far, let’s pretend that a java.io.IOExcep-
tion is thrown for some reason. I don’t
know…the port reading the sensor from
the patient goes wrong. What do you do?
What is the worst-case scenario here?
Well, death, I suspect.

When you think about it, how many
of us would have faith enough in our
own code to have our lives depend on it?
I know there are a number of classes I’ve
written that I’d probably risk somebody
else’s life on, but not my own!

Okay, we jest here. But when you think
about how Java is structured, there’s real-
ly so much to go wrong that’s not even
your responsibility. We all assume the
virtual machine we entrust our byte-
codes to has been coded to a very high
standard and will run 100%. Of course it’s
not 100%, but we as developers have to
make that assumption – otherwise we’re
merely building a house of cards.

That said, I believe I’d be more com-
fortable with, say, Java as opposed to a
C/C++ alternative. Many other languages
aren’t quite as tolerant of mistakes as Java.
The exception handling is very good, con-
sidering that many applications can still
run after an error has been reported,

which is in contrast to a bad memory ref-
erence in C/C++ that has the potential of
bombing the program completely.

If anyone has had the experience of
writing mission-critical health applica-
tions, I’d love to hear from you. Join our
mailing list and let us know just how
much testing goes into this kind of soft-
ware. I think I’m scared to know this
information in case it’s not as much as I
would expect. So, fingers crossed.

One L
This month we also ran into a funny

wee problem that had us chasing our
tails for at least a couple of days. I’m
more than confident this is a situation
many of you have had happen at some
point in your development. Let me take
you through the tale.

One of our clients, who will remain
nameless, had this bright idea of using
the password anjelia1, with a “one” at
the end as opposed to a lowercase “L.”
Not a problem, we figured, and never
gave it much thought until we started to
move the end system from our develop-
ment server to their production server.

For some reason we couldn’t get our
database connection up and running. It
kept saying “incorrect username and
password combination.” The problem
was further augmented by the fact that
we had no control over the database as it
was running on an external server. We
couldn’t even change the username and
password to one that we knew.

So we had to work with the one we
were given. But we were convinced we
had the right username/password
entered. Then one of us joked that the
“1” looked very like a lowercase “L.”
Well, in actual fact, with the font choice
in our telnet window and the font of the
normal text in Netscape, they rendered
to be pixel for pixel exactly the same. We
had no idea what the “L” we had typed
in the configuration file.

15OCTOBER 1999

Java COM

VisiComp
www.visicomp.com

Java COM

16 OCTOBER 1999

Needless to say, we changed the con-
figuration file very, very carefully, ensur-
ing that our hands typed a “one” as
opposed to an “L.” Well, after restarting
the server, the whole thing burst into life
and the problem was solved.

It may seem obvious now, but at the
time it was an eventuality we didn’t even
think about. So the moral of the tale is
that from this point forward we have
banned all use of ones and zeros from all
usernames and passwords. Drastic I
admit, but a decision I feel comfortable
in enforcing.

I’m running out of space at this point
so I’ll just have to remember to tell you
next time about a really bizarre
encounter one of our chaps had with a
Microsoft lawyer. If you knew how
remote we really are, you’ll think it even
more bizarre. Next month, I promise.

Mailing List
As you know, each month I plug the

mailing list that this column spawned.
Well, some good news on this front. No,
this isn’t the last plug, but in fact a
report of something good being born
from the whole discussion list. We’ve
been discussing many interesting top-
ics, and an idea that’s been bouncing
around was that of an open-source Java
library. This is where a core set of
libraries would be held that would serve

as a handy set of utility classes. We
looked into offerings from other sites
trying to do the same thing, but felt
many of them lacked proper manage-
ment. So at this precise moment we’re
looking to form our own version of this.
For more information on this and other
threads of discussion, come and join
our mailing list. The good news is that
getting off the bugger is just as easy as
getting on to it.

To join send an e-mail to listserv@list-
serv.n-ary.com with subscribe straight_-
talking-l in the body of the e-mail. From
there you’ll get instructions on how to
participate on the list.

Salute of the Month
This month I’d like to take my hat off to

three people who, together, do a fine
piece of work that all of us in the Java
community benefit from. I’m talking
about the core team behind the Apache
JServ project, which enables the Apache
Web server to run Java Servlets: Jon
Stevens, Stefano Mazzocchi and Pierpao-
lo Fumagalli. They not only make Apache
attractive to use, they’re also pretty cool
guys. We haven’t come up against any
combination like Apache + JServ that
makes running servlets so easy, without
compromising performance.

Jon “read-the-faq” Stevens deserves a
special mention for the effort he puts

into maintaining the JServ mailing lists.
We’ve come across many in the corpo-
rate world who feel really uncomfort-
able with the lack of official support for
using the likes of Apache and other
open-source software. But the speed at
which Jon answers questions puts a lot
of companies that charge for this level of
support to shame. So, Jon, on behalf of
the developer community, thank you,
sir, for a job well done.

Book Review
This month I haven’t had time to read

any books, which is truly a shame. If
anyone has any good references to
books they think I should read, please e-
mail me. Would love to hear from you.
But as one door closes, another opens.
This month we’ve discovered the won-
der of Neil Diamond. The man is a saint!
I never appreciated what I dismissed as
his middle-aged music before, but after
hearing one of his compilation albums I
realized I hadn’t known just how much
stuff he wrote that’s been covered by
many other artists. So I’m on a journey
of Diamond-discovery and who knows
where that will lead me to.

On that note, I have to tottle off now
and get on with some real work….Sweet
Caroline… bom-bom-bom!

AUTHOR BIO
Alan Williamson is CEO
of n-ary (consulting) Ltd,

the first pure Java
company in the UK. A

Java consultancy company
with offices in Scotland,
England and Australia,

they specialize solely in
Java at the server side.

Alan is the author of two
Java Servlet books and

contributed to the Servlet
API. He can be reached

at alan@n-ary.com
(www.n-ary.com). alan@sys-con.com

S T R A I G H T T A L K I N G

SlangSoft
www.slangsoft.com

17OCTOBER 1999

Java COM

Segue
www.segue.com/ads/corba

Java COM

18 OCTOBER 1999

Conceptually, this applet connects back to the server and retrieves infor-
mation – from a flat file or a script – as a stream of bytes that are cast to chars
and appended to a StringBuffer. The toString() method in StringBuffer is
called, and the resulting string is parsed to create a Vector containing the
news and any other information returned by the server. When you want to
use the applet as a newsfeed, you can permit other sites to embed the applet
in their pages (using the CODEBASE=“URL” attribute, with the URL being
the directory on your server where the class files are, just as you can embed
an image loaded from another server in another page, as shown in Figure 1).
The applet then connects back to the server from which it was downloaded
and gets the information, irrespective of the page in which it’s embedded.

The Code
The source code for the applet, contained in the file newsfeed.java, is

less than 300 lines, yet it contains all the functionality necessary to cre-
ate a simple newsfeed. It uses Java 1.0 event handling to keep the event
handling simple and to work with older browsers. To compile it using a
JDK 1.1 compiler, you’ll need to use deprecation:
javac newsfeed.java –deprecation.

The included packages and classes are needed for painting (awt.*),
storing information in a vector (Vector), parsing the information
returned from the server (StringTokenizer), networking (net.*),
input/output classes and required exceptions (io.*), and working with
dates (Date).

The integer variables that have global scope within the class – speed,
iHeight, iTimesThrough and iCurrentPosition – store the speed of the
thread and the font height and keep track of the number of times the
retrieved news has been presented and the current position in the list of
news items. The initial value of iTimesThrough, 11, is explained in the
paint() method. The Thread variable, called newsthread, is used to
implement the Runnable interface. An Image object is used for the
background image. The String objects – strCurrentString and
strCurrentURL – are used to store the current news item and the asso-
ciated URL. The boolean bCalledFromRun, if true, increments iCurrent-
Position when paint() is called. The Vector veInformation is used to con-
tain the news items retrieved from the server.

The class extends Applet and can be run either in a browser or in
AppletViewer. Implementing Runnable permits the class to spawn and
run in its own thread. To implement the Runnable interface, we need to
implement start(), stop(), and run() methods (discussed below).

Unlike most applets, newsfeed doesn’t override init(); all the initial-
ization is done in the initialize() method. This method is called from
paint() the first time that paint() is called and every 10 times thereafter
to refresh the news.

The initialize() method is the key method of the applet. The Date
object that’s created is used to get the current time in milliseconds
(stored in lUnique), which is used to circumvent caching (anticaching is

T
he conventional way to present up-to-date information is to keep it on your Web

site or a Web site you have some access to or control over so you can modify the

information as needed.This article describes a way to create newsfeeds using Java

applets so that the applet can be embedded anywhere in any page, and the applet

distributor can keep the presented information up to date by modifying informa-

tion on the site. Ways to extend the ability of the applet using CGI programming

are also examined.This solves problems for theaters, clubs and other organizations

that want their information on many pages but want to maintain it in just one

spot. Establishments that want to distribute information about sales and events,

and, of course, news organizations, can also benefit from distributing newsfeeds.

This article also discusses a way to ensure that the information isn’t loaded from

cache (anticaching).

WRITTEN BY JOHN KEOGH

19OCTOBER 1999

Java COM

discussed later in this article). The passed-in graphics object is used to
draw a string indicating that the news is being downloaded and to get
the font metrics, from which the font height is determined and stored in
iHeight.

The strType variable stores the type of news that’s going to be request-
ed. This information is used only if a script will process the request. Set-
ting iCurrentPosition and strCurrentURL variables to 0 and “.”, respec-
tively, clears them.

Listings 1 contains five examples of URLs that can be read from. If
you’re experimenting with the applet using AppletViewer, you’d include
the file called news.txt in the same directory as the applet (the file format
of the news file is discussed later) and then run the applet in AppletView-
er. Remember, when running in a browser, an applet can generally con-
nect back only to the server from which it was downloaded. The URL
string to use depends on whether you’re using a flat file or a script, and
the sophistication of the script. If you’re using a flat file, you’d use
“/news/news.txt”. The applet gets the host name using

getCodeBase().getHost() and creates a URL with the returned host and
the path “/news/news.txt”. If the applet was downloaded from www.lith-
ic.com and you used the path “/news/news.txt”, the URL would be
http://www.lithic.com/news/news.txt. The “?”+lUnique circumvents
caching. You can, of course, use other paths and file names, but the file
must be a publicly accessible ASCII file in the correct format. The last
three examples of URL are scripts, discussed later in this article.

One problem in retrieving the current news is that the requested URL
may be loaded from cache. This can be overcome by creating a unique
URL each time, which can be done by including a unique number in the
query string. One way to accomplish this is to include the current time
in the query string. If the time between queries is greater than the reso-
lution of the system clock, this should overcome the caching problem.
Using a Date to get the current time in milliseconds and appending it to
the query strings of the script URLs is an effective anticaching strategy.
The same strategy can be used with URLs that are not scripts, because
they generally ignore the query string (an HTTP server will generally
serve the same page if you type in index.html or index.html?123). The
key thing is to present the browser with a URL that is unique so it won’t
find it in cache.

After the URL object is instantiated, openStream() is called, which
returns an InputStream for reading from that connection. The Input-
Stream object is used to instantiate a DataInputStream, which we read
from until we reach the end of file, represented by an EOFException. The
bytes returned from the DataInputStream are cast to chars, then
appended to a StringBuffer. The string representing the contents of the
URL is recovered by using the toString() method in StringBuffer. This is a
general-purpose method for creating a string from the content of a URL
– if you try this using (String)url.getContent(), you may get a ClassCast-
Exception. The vectorize() method takes the retrieved String and a token
String as arguments and returns a Vector containing the news. In the
information retrieved from the file or script, we expect the zeroth line –
which becomes the zeroth node in veInformation – to be the name of an
image stored in the codebase. After this image name is stored in strIm-
age, the zeroth is removed, leaving as many nodes in the Vector as there

FIGURE 1 Applets and pages can be loaded from different servers

<applet codebase=”xyz server”>

The web page is served by any
server, but the codebase attribute
in the applet tag indicates that the
class files should be downloaded
from xyz server. After the applet is
instantiated, it connects back to
xyz to get the news.

Java COM

20 OCTOBER 1999

are news items. After the image is loaded, the variable that tracks the
number of times the new items have been presented is set to 0.

To simplify working with the information returned from the server,
the vectorize() method creates a Vector from it. The two parameters
passed in are the String to parse and the String on which to tokenize it. If
the String to parse ended with the token used to parse, we’d end up with
a final piece of zero length. To avoid this, if the string ends with the parse
character, it’s pulled off. Because most files or streams of bytes sent via a
server are punctuated by a <CR><LF>, both are checked for and removed
if they end the strIn. Most of the work is done using a stringTokenizer.
After a Vector is instantiated, the stringTokenizer is instantiated with the
string to parse on and the string to parse. In our model the string to parse
on is always a new line, but passing in the string to parse on makes the
method more flexible. The code then tokenizes the string, adding each
token to the Vector. The code that handles tokenizing by “\n” checks to
see if a \r or \n is present and pulls them off the end of each token
(they’re assumed to be on the end; if your code needs these characters
for anything, you may need to modify this code). The Vector is then
trimmed to size and returned.

The paint() method, which is called repeatedly from run(), is used as
the engine of this applet. The size of the applet is determined first, to be
used to clear the applet’s graphics context. If this is the first time through
(iTimesthrough variable is initially set to 11, so initialize() will be called
the first time through paint()), or if the number of times the news has
been presented exceeds some arbitrary number of times (here 10), the
news is refreshed using the initialize() method.

If an image is available, it’s drawn on the background. The text is off-
set 45 pixels to be to the left of the image (it could also be drawn on top
of the image). The examples in Figures 2 and 3 are just names for a com-
pany or club, but in practice they could be an advertisement or some-
thing associated with the news item. The image name is downloaded
with the news, so it can be changed with each refresh.

Each line of news is in two parts: the URL is everything up to the first
space, and the news item is everything after. After the current line of
news is retrieved, the iCurrentPosition variable is incremented if
bCalledFromRun is true. Initially the paint method is called repeatedly
as the background image is drawn. To prevent an initial race through the
news, the current position increments only if the paint() method was
called from run(). New news is then drawn, in blue, 45 pixels from the left
side of the applet and iHeight down (the iHeight variable was set to the
font height in the initialize() method). Checking on whether the iCur-
rentPosition variable is bigger than veInformation, the Vector, which
holds all the news items, permits the news to “wrap” back to the first
news item if the current news item is the last. The iTimesThrough vari-
able is incremented if the news wrapped, tracking the number of times
that the current news has been displayed.

The mouseDown(), mouseEnter() and mouseExit() methods work
together to create a mouse interface for the applet. In mouseDown(), if
the current URL (set in paint()) isn’t a “.”, a URL object is instantiated and
passed to the showDocument() method in the applet context for this
applet. Using a “.” permits presenting news items for which there is no
link. The mouseEnter() method draws the current news item in red and
shows the link in the status bar with showStatus(), both of which are
common in applets that show menus or image maps. The thread is
stopped in mouseEnter() so the current news item will remain displayed.
The mouseExit() method undoes what the mouseEnter() method did by
converting the text color back to blue, clearing the status and then start-
ing the thread again.

The start(), stop() and run() methods are used to implement the
runnable interface. A Thread object called newsthread is instantiated
and started in the start() method. The run() method is called repeatedly,
and the thread is paused for speed milliseconds; then repaint() is called.
The stop() method is called when the applet stops.

To update the news in real time, just upload a new flat file or change
the data in the database if you’re using a database with a script. Flat files
can also be changed by using CGI scripts that allow an authenticated
user to modify, delete or add to the contents of the flat file. The next time
the applet accesses the flat file or script, it’ll get the current information
(sometimes flat files are cached by the server, but in our experience this
hasn’t been a problem).

Working with CGI Scripts vs Flat Files
Whether using a flat file, a CGI script that uses a flat file for data or a

CGI script that uses a DSN and a database, the applet expects the data to
be presented in a certain format:

line1: Image<optional \r><\n >
line2: URL1[space]Text for news item 1<optional \r><\n >
line3: URL2[space]Text for news item 2<optional \r><\n >
.
.
.
Line: URLn-1[space]Text for news item n-1<optional \r><optional \n>

Any data source that can supply text in this format can act as a data
source for the newsfeed. In practice, the designer would probably
choose something with more flexibility and capability, but this works
fine for our example. In any case, if you use a flat file, remember to
upload it using ASCII mode.

The news.txt file has information in the format above, so it can be
parsed directly by the applet. The information in cginews.txt must be sup-
plied to the applet via newsfeed.pl, a Perl script. If you use the script and
the cginews.txt, be sure that the permission of the script is executable, the
path to the Perl interpreter is correct and the cginews.txt is world readable.
Note that \n is read from the cginews.txt file; if the terminal character on
each line is not a \n , the information won’t parse correctly when it’s
received by the applet. (Perl programming is beyond the scope of this arti-
cle, but if you have some experience, these scripts should be a starting
point. If not, the flat file can provide most of the same functionality.)

The Perl script newsfeed.pl first retrieves the query string (this is
what’s after the “?”). If the URL accessed was http://www.lithic.com/cgi-
local/newsfeed.pl?ls930353830, the query string would be ls930353830.
The numbers after the Is represent the anticaching strategy discussed
above. The first two characters are passed to the PrintNews function,
which prints characters 2 through the last character of every line in the
cginews.txt file that start with these two letters. In the example case the
two letters are “ls”. The first two characters of each line, which are the
code compared to the type passed in, are removed before the line is
printed. Using a code permits a single applet with a single data source to
supply different news depending on the query string. This could be com-
bined with cookies on the page the applet was embedded in, so user
preferences could dictate what news was sent.

A guardian is set so that if no lines were printed for a given two-letter
combination, a “.” and a line indicating there was no news would be
printed out.

Modifications to the Perl script and minor modifications to the applet
would permit a more sophisticated interaction with the user. For exam-
ple, if the URL http://www.lithic,com/cgi-local/moresubstantialnews-
feed.pl?type=Is&docbase=[doc base]&time=[time] were constructed and
opened, where [doc base] and [time] are understood to be the page that
the applet is embedded in and the current time, and the information was
parsed by the script, the type and codebase would be known (knowing
the codebase would permit returning an appropriate message to unau-
thorized newsfeeds, rather than the news). The time is still used for anti-
caching, but it may also be interesting statistically.

FIGURE 2 Applet background
for a company

FIGURE 3 Applet background
for a club

KL Group
www.klgroup.com/swingsuite

21OCTOBER 1999

Java COM

Java COM

22 OCTOBER 1999

Conclusion
The newsfeed is easy to set up and distribute, but if you have some dif-

ficulty, here are some things to check.
• In the newsfeed.java, did you choose the right string for the URL (for

example, if you have a news.txt in a feed directory, make sure you cre-
ate a string that points at /feed/news.txt)?

• Check if the URL creation code was changed to url=new URL(str) (this
is indicated in comments in the code).

• Did you upload the news file in ASCII mode and the class files in bina-
ry mode?

• You should use the Perl script only if you have some experience with
Perl.

• You may want to remove the ?=code after the .txt if you’re using a flat
file and having problems.

This implementation of a newsfeed, though limited, created a very
small class file that displays news, responds to button clicks when there
is a link associated with a news event, and circumvents caching. Many
improvements are possible: adding more colors, offsets, speed, audio
clips and so forth. Additionally, double buffering would offer smoother
graphics. The applet offers a functional framework in a small package.

Using a newsfeed solves many of the problems associated with the
static nature of Web pages and solves access issues. For example, a doc-
ument on a CD-ROM could present current information (provided that
the person reading the HTML document in which the newsfeed was
embedded was attached to the Internet). Used correctly, newsfeeds
based on the applet described in this article can be a way to make the net
more relevant, provide better service to your customers and substantial-
ly decrease the time it takes to disseminate information.

AUTHOR BIO
John Keogh is president of Lithic Software Corporation, an Internet software and services company. He has a
background in computer science, chemistry and technical writing. John programs in C, C++, Java, Perl, SQL
and several other languages.You can visit his Web site at www.Lithic.com/.

// newsfeed.java a class for creating a newsfeed
// includes

import java.awt.*;
import java.util.Vector;
import java.util.StringTokenizer;
import java.net.*;
import java.io.*;
import java.util.Date;

//class that implements a simple newsfeed
public class newsfeed extends java.applet.Applet

implements Runnable
{
int speed=2000, iHeight=0, iTimesThrough=11,

iCurrentPosition;
Thread newsthread;
Image image;
String strCurrentURL, strCurrentString;
boolean bCalledFromRun=false;
Vector veInformation;

// called from paint when needed, don't want to
// call from init, because we need a graphics
// object for this

private void initialize(Graphics g)
{
String strType=getParameter("type");
if(strType==null)

strType="ls";

//a date is used to prevent caching
Date date=new Date();
long lUnique=date.getTime();

iHeight=g.getFontMetrics().getHeight()+2;

g.setColor(Color.black);
g.drawString("Getting current news...", 45,

iHeight);

strCurrentURL=".";
iCurrentPosition=0;
//first one for use on your own system, with
//appletviewer, second third, fourth, or fifth
//for use on the Web, depending on if you use
//a flat file in a directory called news, or a
//script in a cgi-local or cgi-bin directory, and
//how the script parses the query string
String str="news.txt";
//String str="http://"+getCodeBase().getHost()+
// "/news/news.txt?"+lUnique;
//String str="http://"+getCodeBase().getHost()+
// "/cgi-local/newsfeed.pl?"+
// strType+iUnique;
//String str="http://"+getCodeBase().getHost()+
// "/cgi-bin/newsfeed.pl?"+
// strType+lUnique;
//String str="http://"+getCodeBase().getHost()+
// "/cgi-bin/newsfeed.pl?type="+
// strType+"&time="+lUnique+
// "&docbase="+getDocbase();

//a url object is created, then a stream is created
//to retrieve the content of the url
URL url=null;
String strContent="";
try

{
//first one for use on your own system, with
//AppletViewer, second for use on the Web
url=new URL(getCodeBase(), str);
//url=new URL(str);
}

catch(MalformedURLException m){return;}
try

{
StringBuffer sb=new String-
Buffer("");

Listing 1: newsfeed.java

Receive the
“JDJ Digital Edition”
FREE! when you...

$3999
year/12 issues

JavaDevelopersJournal.com

1800-513-7111
subscribe online for faster service
subscribe@sys-con.com

keo@lithic.com

23OCTOBER 1999

Java COM

BlueSky
www.blueskysoftware.com

Java COM

24 OCTOBER 1999

InputStream is=url.openStream();
DataInputStream dis=new DataIn-
putStream(is);
while (true)

{
try{sb.append((char)dis.read-
Byte());}
catch(EOFException f){break;}
}

strContent=sb.toString();
}

catch(IOException e){return;}

//after the contents of the url are
//retrieved, they are parsed to
//create a Vector which contains
//the information
veInformation=vectorize(strContent, "");

//get the background image, then
//remove it
String strImage=(String)veInforma-
tion.elementAt(0);
veInformation.removeElementAt(0);

//load the image, if there is one
if(strImage.compareTo(".")!=0)

image=getImage(getCodeBase(),
strImage);

iTimesThrough=0;
}

//parses the returned information
//based on <CR>
private Vector vectorize(String strIn,

String strParse)
{
//if it ends with our parse charac-
ter, pull it off the end

if(strIn.endsWith("\r")||strIn.endsWith(
"")||strIn.endsWith(strParse))

strIn=strIn.substring(0,
strIn.length()-1);

if(strIn.endsWith("\r")||strIn.endsWith(
"\n")

strIn=strIn.substring(0,
strIn.length()-1);

Vector ve=new Vector(1);

//get ready to tokenize the string
StringTokenizer t = new StringTo-
kenizer(strIn, strParse);

int iLines = t.countTokens();

if(strParse.compareTo("\n")==0)
{
for(int i=0; i<iLines; i++)

{
String str=t.nextToken();
if(str.indexOf("\n")!=-1)

str=str.substring(0,
str.length()-1);

if(str.indexOf("\n")!=-1)
str=str.substring(0,
str.length()-1);

ve.addElement(str);
}

}
else

{
for(int 1=0; i<iLines; i++)

ve.addElement(t.nextToken());
}

ve.trimToSize();
return ve;
}

public void paint(Graphics g)
{
Dimension d=this.size();

//the first time through, and each
//ten thereafter, get the news
if(iTimesThrough>10)

{
//clear this
g.setColor(Color.white);
g.fillRect(0, 0, d.width, d.height);

initialize(g);
}

//clear
g.setColor(Color.white);
g.fillRect(0, 0, d.width, d.height);

//draw the background image
if(image!=null)

g.drawImage(image, 0, 0, this);

//get the current text and url,
//then draw the text
String strTemp=(String)veInforma-
tion.elementAt(iCurrentPosition);
strCurrentURL=strTemp.substring(0,
strTemp.indexOf(" "));
strCurrentString=strTemp.sub-
string(strTemp.indexOf(" ")+1);
g.setColor(Color.blue);
g.drawString(strCurrentString, 45,
iHeight);

//only advance if called from run
if(bCalledFromRun)

iCurrentPosition++;
bCalledFromRun=false;

if(iCurrentPosition>=veInfor-
mation.size())

{
iCurrentPosition=0;
iTimesThrough++;
}

}

//overide update for smoother graphics
public void update(Graphics g)

{
paint(g);
}

//If there is a mousedown go to the url
//associated with this news event. A
//"." is used if there is no url
//associated with the news item
public boolean mouseDown(Event e, int
x, int y)

{
if(strCurrentURL.compareTo(".")!=0)

{
URL url;
try{url=new URL(strCurrentURL);}
catch(MalformedURLException
m){return true;}
this.getAppletContext().showDocu-
ment(url);
}

return true;
}

//if the mouse enters the applet,
//repaint the text red and stop run-
//ning. Set the status to the url
//associated with the news item
public boolean mouseEnter(Event e,
int x, int y)

{
Graphics g=this.getGraphics();

//clear
Dimension d=this.size();
g.setColor(Color.white);
g.fillRect(0, 0, d.width,
d.height);

//draw the background image
if(image!=null)

g.drawImage(image, 0, 0, this);

g.setColor(Color.red);

g.drawString(strCurrentString, 45,
iHeight);
if(strCurrentURL.compareTo(".")!=0)

showStatus(strCurrentURL);
else

showStatus("No Link");
this.stop();
return true;
}

//if the mouse exits the applet,
//repaint the text blue and start
//running again. Clear the status
public boolean mouseExit(Event e, int
x, int y)

{
Graphics g=this.getGraphics();
g.setColor(Color.blue);
g.drawString(strCurrentString, 45,
iHeight);
this.start();
showStatus("");
return true;
}

//start stop and run are required to
//implement the Runnable interface.
//Speed can be adjusted to present
//information faster or slower.
public void start()

{
newsthread = new Thread(this);
newsthread.start();

}

public void stop()
{

newsthread.stop();
}

public void run()
{

while (true)
{
bCalledFromRun=true;
try {Thread.currentThread()
.sleep (speed);}

catch (InterruptedException e){}
repaint();

}
}

}

lithic.gif
tmtm.gif
lshttp://www.lithic.com/java/Person-
alChatware.html Have a look at the plu-
gin API in lpc
lshttp://www.lithic.com/java/calcula-
tor.html See Lithic Software's newest
applet

Listing 2: news.txt

25OCTOBER 1999

Java COM

Sybase
www.sybase.com

Java COM

26 OCTOBER 1999

lshttp://www.lithic.com/onlinesystems/in
dex.html Check out LSC Online Systems
tmhttp://www.toastmasters.org/ Toastmas-
ters main page is more useful than ever
tmhttp://www.lithic.com/tm/tm.html Grand
Junction Clubs now have a page

<HTML>
<HEAD>
<title>Lithic Newsfeed</title>

<!newsfeed.java a page with the news-
feed.class embedded>

</HEAD>

<BODY BGCOLOR=White>

<CENTER>
<APPLET CODE="newsfeed.class" width=300
height=20>
<PARAM NAME=type VALUE="ls">
</APPLET>
</CENTER>

<BODY>

</HTML>

#!/usr/bin/perl
newsfeed.pl

#newsfeed.pl a script for sending out news

MAIN:
{
$file="cginews.txt";
$querystring=$ENV{"QUERY_STRING"} ;
print("Content-type: text/html");
if($querystring)

{
$query=substr($querystring, 0, 2);
&PrintNews($file, $query);
}

}

#prints out all the lines that begin
with the
#appropriate letters the letter is the
token
#sent in the query string
sub PrintNews

{
local($file, $control)=@_;
local($guardian);

$guardian="";

open(TIMES, $file);
while(<TIMES>)

{
$type=substr($_, 0, 2);
if($type=~/$control/)

{
$content=substr($_, 2);
print($content);
$guardian="t";
}

}
close(TIMES);

#if nothing was found, just print out
that no news is currently available
if(!$guardian)

{
print("");
print(" no news currently avail-

able");
}

}

lslithic.gif
tmtm.gif
lshttp://www.lithic.com/java/Person-
alChatware.html Have a look at the plu-
gin API in lpc
lshttp://www.lithic.com/java/calcula-
tor.html See Lithic Software's newest
applet
lshttp://www.lithic.com/onlinesystems/in
dex.html Check out LSC Online Systems
tmhttp://www.toastmasters.org/ Toastmas-
ters main page is more useful than ever
tmhttp://www.lithic.com/tm/tm.html Grand
Junction Clubs now have a page

Listing 5: cginews.txt

Listing 4: newsfeed.pl

Listing 3: newsfeed.html

Instantiation
www.instantiations.com

PointBase
www.pointbase.com/devlic/jdj

27OCTOBER 1999

Java COM

Cross-device portability

WRITTEN BY
AJIT SAGAR

Palming Java

I
’d like to start this month’s article with some of my impres-
sions of JavaOne ’99. Last year was far more exciting with
promises of new magic kits and potions handed out in abun-
dance.This year there was a definite touch of reality in the
air with less sleight of hand and more live rabbits actually
jumping out of the hat and onto the stage.The smoke and
mirrors were still there, but there was some substance
behind them.

E - J A V A

Java COM

28 OCTOBER 1999

The “real” feel to JavaOne is due to
the fact that Sun seems to have finally
gotten its story straight in terms of what
“ubiquitous” really means. When you
look at WORA (write once, run any-
where), the promise still holds true.
However, what is it that you end up run-
ning anywhere? Is it the same Java? I
don’t know about you, but I feel more
comfortable knowing that the Java that’s
going to run on my pager isn’t the same
one that runs my banking application.

The Java platform has been segregated
into three platform editions. Sun’s Web
site explains their strategy: “Recognizing
that ‘one size doesn't fit all,’ Sun has
regrouped its innovative Java technolo-
gies into three editions: Micro (J2ME),
Standard (J2SE) and Enterprise (J2EE).”

A detailed discussion on the purpose
of each edition of the Java platform is
best left for another time. This month I’d
like to focus on some of the application
areas of the Java 2 Micro Edition – specif-
ically, the 3Com PalmPilot consumer
device and how it leverages the features
of the Java platform. We’ll also look at
why the PalmPilot may be the killer
application Java has been looking for.

Consumer Devices and Java
Java started out as a language for

embedded consumer devices, specifical-
ly for set-top boxes like the toaster and
the television. Over the last four years,
Java has made its impact on the enter-
prise as the language and platform of
choice for designing distributed, enter-
prise-level business solutions. Indeed,
Java is one of the key enablers for the
rapidly evolving areas of e-commerce.

One of these areas is the world of
intelligent consumer devices where the
intelligence is built into the network.
The various devices, such as cell phones,
pagers and smart cards, need to be able
to access the network via a common
computing platform. The J2ME edition
of Java attempts to provide such an envi-
ronment. The most practical require-

ment on a software platform that can be
embedded in these consumer devices is
its footprint, which must be extremely
small. One of the main features of the
J2ME is its tiny footprint.

Sun has been giving away the Java
language and associated APIs for free,
but that doesn’t bring the money in.
With the acceptance of Java as the com-
mon platform for consumer devices,
Sun has a foot in the door of an extreme-
ly large market. Now they can really start
collecting on their investment in Java.

Java 2 Micro Edition
J2ME bundles the APIs for software

development in the consumer space.
This includes devices ranging from
rings, smart cards and pagers to more
intelligent PDAs like the PalmPilot and
cell phones – all the way up to appli-
ances with set-top boxes such as TVs.
With J2ME Java provides a complete
end-to-end solution for creating net-
worked products and applications for
the consumer and embedded markets.

The J2ME framework further segre-
gates the major types of consumer
devices by grouping them into a limited
number of categories with varying levels
of built-in intelligence. To help content
developers, each category has a profile;
it’s defined in the form of a specification
of the minimum set of APIs useful for a
particular product, and a specification
of the Java Virtual Machine functions
required to support those APIs.

The PalmPilot – Java’s Saving Grace?
Back to JavaOne – another obvious

thing was the change in what Sun was
peddling this year. Last year it was all
about network computers. The NC was
going to be the ultimate consumer-end
device; everything else would reside on
the network. Another thing I noted –
there wasn’t much talk about rings and
buttons.

This year, though the message – “The
Network Is the Computer” – was still the

same, the vehicle for conveying it was
radically different. It seems that the ulti-
mate device for taking Java to the streets
has been identified as 3COM’s PalmPi-
lot. I see this as a smart move. Sun is tap-
ping into the large market the Palm has
and will have in the future.

My take on the alliance is that the
Palm has given Java the home it was des-
perately looking for. Even though Java
was finding applicability in other con-
sumer devices, it wasn’t making a signif-
icant impact. Over the last two years Sun
has introduced tailored JVM technology
to serve products in the consumer and
embedded markets. These include Per-
sonal Java technology targeted at screen
phones, high-end PDAs and set-top
boxes, and Java Card technology target-
ed at smart cards, the Java Ring, I-But-
ton, etc., which have yet to get the buy-
in from consumer-oriented vendors. A
more intelligent device was needed that
would do a lot more than allow you to
brew your coffee. The Palm comes with a
large set of application suites, so it
already has the beginnings of industry
verticals stemming from it.

KVM – The Palm’s Keys to “Ubiquity”
The relationship between the Palm

and Java is going to be one of symbiosis.
The market for one feeds the market for
the other. To increase its lead in the mar-
ketplace, specifically against the CE, the
Palm needs to have an open, nonpropri-
etary interface for working with other
devices. This is made possible by Sun’s
Java KVM, which forms the core of J2ME.

The KVM is so named because its size
is measured in the tens of kilobytes,
around 80–100K. It fits in the tiniest
handheld devices such as pagers, and
needs to run on an underlying operating
system. In the case of the PalmPilot, this
operating system is the PalmOS. The
KVM is a new Java runtime environment
built from the ground up to make an
extremely lean implementation of the
JVM.

29OCTOBER 1999

Java COM

New Atlanta
www.newatlanta.com/

Java COM

30 OCTOBER 1999

Quick Steam
www.quickstream.com

The KVM has been developed by Sun
in collaboration with other industry part-
ners, such as service providers. These
partners are crucial for making sure the
KVM can truly enable mobile network
devices such as digital cellular phones,
pagers, mainstream personal digital
assistants, low-end analog set-top boxes
and small retail payment terminals.

The KVM binary code will be available
in prerelease form for 3Com’s Palm II
and Palm V. Sun anticipates that a wide
range of wireless devices containing the
KVM will become available early in 2000.

PalmOS – Java’s Gateway to the Consumer?
As mentioned above, the KVM needs

an OS to run on. The PalmOS software will
serve as a primary reference platform for
application development using KVM. Sun
and 3COM are collaborating to provide an
end-to-end solution for delivering con-
tent and Java applications to Palm com-
puting platform devices via Sun’s software
products. The next level of integration will
involve joining Java with 3Com’s Palm.net
service, the recently announced wireless
service for the Palm VIII.

Rubbing the Magic Lamp…
Another enabler for this new world of

consumer devices is Java’s Jini technolo-
gy, which allows a device on the network
to discover other devices and query

them for the services they offer. The
Palm will be another such device. With
Jini, the Palm can become truly net-
work-enabled and leverage services
from a plethora of computers, appli-
ances, enterprise-level systems and
consumer devices.

Putting It in the Commerce Perspective
J2ME and the KVM help solidify Sun’s

vision of “providing the dot in the .com”
networking world. This ties in with the e-
business model of service-based busi-
nesses on the Web. The current commerce
market is rapidly shifting from a product-
based paradigm to a service-based one.
This means that instead of installing soft-
ware products, organizations are shifting
toward a model in which the products are
hosted at remote locations and their ser-
vices are available across the network. All
the necessary software can be down-
loaded across the Internet.

This isn’t a reality yet, but Java enables
this business model because of its rich
support for networking, dynamic nature
and portability. The Palm is one of the
many devices that can play in this area.
Once the underlying infrastructure is in
place, these devices can play more sub-
stantial roles in e-commerce transac-
tions. For example, the Palm can act as a
kiosk for purchasing goods, quoting ser-
vices, auctioning products and so on.

Cross-Device Portability
It looks like Java and the Palm have

entered into a marriage made in heaven.
However, fidelity isn’t necessarily a pre-
condition for this relationship. One of
Java’s greatest claims to fame is its porta-
bility. In the consumer device segment,
i.e., using J2ME, it translates to portabil-
ity across these devices. The Palm is one
of the many consumer devices that will
support an edition of the Java VM.
Indeed, several other consumer devices
already support Java on their operating
systems. Basically, Java allows them to
speak the same lingo.

Trading Places
The market for e-business is expected

to grow to over a trillion dollars by 2003.
My contention is that in about 10 years
the only kind of commerce that will exist
in this world is e-commerce. Program-
ming languages come and go, but the
applications they give birth to last a long
time. Devices like the Palm are introduc-
ing completely new suites of applica-
tions that will help define the end-user
interface in the world of e-commerce.
The combination of the Palm and Java
creates a powerful, exciting platform
that’s revolutionizing the way e-busi-
ness is conducted today.

AUTHOR BIO
Ajit Sagar, a member of

the technical staff at
i2Technologies in Dallas,

Texas, holds an MS in
computer science and a
BS in electrical engineer-
ing. He focuses on Web-

based e-commerce
applications and

architectures. Ajit is a
Sun-certified Java

programmer with nine
years of programming

experience, including two
and a half in Java. ajit@sys-con.com

E - J A V A

31OCTOBER 1999

Java COM

Tidestone
www.tidestone.com

Java COM

32 OCTOBER 1999

J D J F E A T U R E

JavaMail is a set of abstract classes that create a framework for send-
ing, receiving and handling e-mail, along with implementations of those
classes. The package Sun provides contains implementations of IMAP
and SMTP, allowing you to get started immediately on sending and
receiving mail. They also provide a separate POP3 implementation that
I’ll describe below. The framework makes it easy to create your own
cross-platform mail application without an in-depth knowledge of e-
mail. Methods and classes that
allow you to access mail folders,
download messages, send mes-
sages with attachments and filter
mail are included.

JavaMail has a number of uses in
personal and Enterprise-level pro-
gramming. It can be used to create
personal mail filters, simple mailing
lists and customized personal mail
applications, as well as to add full e-
mail capabilities to an Enterprise
application or create a full-fledged
e-mail client. A number of products
currently available are built for or
around JavaMail; many are listed on
the JavaMail Third Party Product
page (http://java.sun.com/prod-
ucts/javamail/Third_Party.html).
Several companies have written
marketing applications that use
JavaMail to send customized mail
to groups of contacts, and many
companies have written new e-mail
clients using JavaMail and its exten-
sions.

Background
Knowing a little about what e-mail is and how it is sent and received is

helpful in creating e-mail applications. E-mail protocols are, in the most
basic sense, a way of transferring data from one machine to another,
possibly going through several other machines along the way. SMTP has
existed, essentially in its current state, since the early 1980s, and POP
and IMAP aren’t much younger. The preceding is a very basic introduc-
tion to these protocols; see “Where to get more information” for more
information.

SMTP – Simple Mail Transfer Protocol – allows two mail servers to
communicate using a simple language, and provides a step-by-step pro-
tocol for exchanging information. To use the example that follows, you’ll
need an SMTP server. If you’re using UNIX, you probably have one on
your machine already. If you’re not, or don’t have a server installed, you
can ask your system administrator for the name of your SMTP server.

IMAP – Internet Mail Access Protocol – and POP3 – Post Office Proto-
col Version 3 – are client/server mail protocols. SMTP delivers mail to a

central location, where the user can either log in and read it directly or
use a client/server mail protocol to read it remotely. IMAP is designed to
keep mail on a remote server and let the user interact with it there, while
POP3 is designed to forward a user’s mail to a single machine, where the
user can go offline and read it, if necessary. In general, people with slow
connections (dial-up or otherwise) tend to use POP3 because they can
connect and download their mail without having to keep the connection

open afterwards. People with fast
connections and multiple ma-
chines usually use IMAP so they
can read mail from whichever
machine they happen to be on
without losing access to the mail
they read elsewhere. In the fol-
lowing examples, you will need a
POP3.

How Do I Get Started?
First, you’ll need the JDK (I use

1.2 in this article), JavaMail pack-
age and the JavaBeans Activation
Framework extension (JAF). JAF is
a standard extension that provides
a way to identify and correctly
process unknown data. You can
download each from the Java Web
site. JDK 1.2 (also known as the
Java 2 SDK) is at http://java.
sun.com/products/jdk/1.2/, and
JavaMail and JAF are at http:/
/ j a v a . s u n . c o m / p r o d u c t s /
javamail/index.html. Follow the
installation instructions given on
the download pages, and install the
packages. JavaMail comes with a

number of examples in the demo directory, many of which are easy to use
immediately or can be modified for specific situations.

A simple example is msgsendsample.java. This sends a simple mes-
sage (included in the example) to an e-mail address provided by the user.
To use this, go to the demo directory and compile msgsendsample.java.
Then, on the command line, type:

java msgsendsample <your email address> <your email address> <your
SMTP server> false
e.g.
java msgsendsample rmg@silentq.com rmg@silentq.com
smtp.silentq.com false

The command line arguments are <address to> <address from> <mail
server> <debug>. You can actually specify any e-mail address for the
from argument and the message will appear to be from that e-mail

By now you might be asking yourself the question...

WRITTEN BY RACHEL GOLLUB

33OCTOBER 1999

Java COM

Fierano
www.fiorano.com

Java COM

34 OCTOBER 1999

address, but a look at the full headers will show the real source. The false
at the end indicates that you don’t want to see the debug information;
change that to true for a look at what the example is doing. The complete
SMTP connection dialog will be printed out, as well as some debug
information for the example.

A look at the source shows how this example works:

Properties props = new Properties();
props.put("mail.smtp.host", host);

JavaMail needs the mail host property set to determine where the
SMTP server is located. If it’s on your local machine, the send can hap-
pen locally. Otherwise it will automatically connect to the server
machine and send from there.

Session session = Session.getDefaultInstance(props, null);

This gets a mail session (notice it uses the properties just created). The
default mail session is created if it doesn’t already exist, and permissions
are created or checked. Since the Authenticator (security object – the
second parameter listed) is null, there’s no security on this object, and
anyone can access it.

Message msg = new MimeMessage(session);
msg.setFrom(new InternetAddress(from));
InternetAddress[] address = {new InternetAddress(args[0])};

msg.setRecipients(Message.RecipientType.TO, address);
msg.setSubject("JavaMail APIs Test");
msg.setSentDate(new Date());
msg.setText(msgText);

This section creates the actual message object and fills in the to, from,
subject, date and content. There are also options to set the reply to, con-
tent and content type, and other header information. Since this is a
MIME – Multipurpose Internet Mail Extensions – message, it can have
several parts, none of which have to be plain text. You may want to set a
section to HTML or add an attachment. You can set a DataHandler (in
the JDK) using setDataHandler() in MimeMessage to handle nontext
parts. This is a simple one-part text message, so you can use the setText()
method instead.

Transport.send(msg);

This actually sends the message, using SMTP. If the send fails, it will
throw exceptions based on the problem with the send. For example, try
sending to a nonexistent address for example, (“rachelfoo”). You’ll see a
SendFailedException, with some details about the address that failed.

With a few changes you can modify this example to send mail pro-
grammatically. Changing the <to>, <from>, <host>, <subject> and <con-
tent> values to method arguments and adding a constructor to set them
will allow you to instantiate this object from another class and send mail
automatically. In addition, you can add a hashtable of substitutions and
include these in your message text to personalize the e-mail – see List-
ing 1. This listing creates the hashtable individually for each e-mail, but
this could be customized to read from a database or file.

A More Complex Code Sample
The next example will read and optionally delete messages from a

POP3 server. The first step is to download and install a POP3 provider.
The example uses Sun’s POP3 provider. Follow the directions from the
JavaMail page at Sun (listed above) to download and unzip the package,
and set your classpath correctly. Since you may want to use other
providers later, you need to add this provider to your provider list. To do
this, create a new directory, copy the mail.jar file into that directory and
unjar it (jar xvf mail.jar). You’ll see several directories, including a META-
INF directory, which generally contains information about the jar file
that includes it, but in this case also contains information critical to Java-

Mail. This is important to remember. If you ever install JavaMail as part
of a product, be sure to include this directory in your product package.

To add the POP3 provider, create a file called javamail.providers with
the following line in it:

protocol=pop3; type=store; class=com.sun.mail.pop3.POP3Store;

Then jar the directories again (jar cvf mail.jar *), back up the old
mail.jar and move the new mail.jar into place. You now have a POP3
provider added to your provider list.

The POP3 example is included here as Listing 2. Download and com-
pile the program – you’ll need a POP3 mail server to test it. The example
takes parameters <username> <password> <server> <delete>. The last
parameter specifies whether you want to delete any messages you read
from the server. Test the program with:

java MailPrinter <your POP3 username> <your POP3 password> <your
POP3 mail server> false
e.g.
java MailPrinter rachel mypassword pop3.silentq.com false

You’ll see a list of all your new messages with their headers. The thread
will continue, downloading all messages every five minutes until you
stop it. This could easily be changed to append to a file; with the delete
option set to true, it would constantly update your local mail file. It could
also be altered simply to check the number of messages and, with a
small user interface, could be made into a mail notification system.

The source can be broken down as follows:

Properties lProperties = System.getProperties();

Session lSession = Session.getDefaultInstance(lProperties, null);

As in the last example, the session is started with no security. This time
it’s started with the system properties instead of an empty Properties
object.

Store store = null;
Folder folder = null;
try {

store = lSession.getStore(protocol);
}

This part gets the store type for the given protocol (POP3). Store is an
abstract class that models a message store. This allows connections to
various types of actual message stores with no loss of generality.

store.connect(host, user, password);

Now it connects to the remote server (host) with the given username
and password. Obviously, it would be unwise to do this part program-
matically without a fair number of precautions – storing your password
in plain text in the source is a security problem. It might be wise to store
the password encrypted in your database or file system and retrieve and
unencrypt it only when needed.

folder = store.getDefaultFolder();
...
folder = folder.getFolder("INBOX");

This initializes the folder with the standard default mailbox, indicated
by the key word “INBOX”. In this context INBOX stands for “primary fold-
er for this user on this server” – it will vary by protocol, server and user.

folder.open(Folder.READ_WRITE);
...
Message[] messages = folder.getMessages();

35OCTOBER 1999

Java COM

ObjectSwitch
www.objectswitch.com/giotto45

Java COM

36 OCTOBER 1999

Here the folder is opened and the messages are downloaded. This
includes their headers and all parts of the message (in the case of MIME
messages). This doesn’t remove them from the server; it just copies them
into memory.

if (delete)
messages[i].setFlag(Flags.Flag.DELETED, true);

...
folder.close(true);
store.close();

Flags indicate the status of the message in the folder. Here each down-
loaded message is marked deleted, and when the folder is closed the
“true” flag indicates that all deleted messages should be removed.

for (Enumeration e = pPart.getAllHeaders(); e.hasMoreElements();)
{

Header header = (Header) e.nextElement();
System.out.println(header.getName() + ": " + header.getValue());

}

This section gets each of the header lines from the message and prints
them out. You could change this part to print out only the headers you’re

interested in using: getMatchingHeaders() instead of getAllHeaders().
The rest of the example recursively divides the message into parts and

prints each part. This example could easily be expanded to filter out
messages with selected subjects or messages from particular addresses.
It could store the messages in a database or to a file. In all, JavaMail gives
you powerful tools to filter and manipulate e-mail messages with very
simple code.

For More Information
1. JavaMail home page: http://java.sun.com/products/javamail/index.html
2. RFC 821 (SMTP specification: http://info.internet.isi.edu/in-

notes/rfc/files/rfc821.txt
3. IMAP, POP3: ftp://ftp.cac.washington.edu/mail/imap.vs.pop

For anything not covered in these sources, a simple Net search will
probably find what you need. E-mail is a frequently discussed topic on
the Net, and there are FAQs and articles everywhere. Good luck!

AUTHOR BIO
Rachel Gollub, founder of SilentQ Software Company, learned Java as a JavaSoft engineer from 1995 to
1997, and has worked at several start-ups since then. She writes articles and gives presentations on Java
and related subjects.

/*
* SendMessage.java
*/

import java.util.*;
import java.io.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;

/**
* This is copied almost directly from
* msgsendsample.java, by Max Spivak,
* with changes by Rachel Gollub
* (rachel@silentq.com). More details
* are available in the accompanying
* article.
*/

public class SendMessage {

public boolean send(MessageObject message) {
//create some properties and get
//the default Session
Properties props = new Proper-
ties();
props.put("mail.smtp.host", mes-
sage.host);
// Uncomment this to debug
//props.put("mail.debug", args[3]);

Session session =
Session.getDefaultInstance(props,
null);

session.setDebug(false); // true to
debug

try {
// create a message
Message msg = new MimeMessage(ses-
sion);
msg.setFrom

(new InternetAddress(mes-
sage.from));

InternetAddress[] address =
{new InternetAddress(mes-
sage.to)};

msg.setRecipients
(Message.RecipientType.TO,
address);

msg.setSubject(message.subject);
msg.setSentDate(new Date());
msg.setText(replace

(message.custom,
message.text));

Transport.send(msg);
} catch (MessagingException mex) {

System.out.println
("\n--Exception handling in " +
"msgsendsample.java");

mex.printStackTrace();
System.out.println();
Exception ex = mex;
do {

if (ex instanceof
SendFailedException) {
SendFailedException sfex =

(SendFailedException)ex;
Address[] invalid =

sfex.getInvalidAddresses();
if (invalid != null) {
System.out.println

(" ** Invalid Addresses");
if (invalid != null) {

for (int i = 0;
i < invalid.length; i++)
System.out.println

(" " +
invalid[i]);

}
}
Address[] validUnsent =

sfex.getValidUnsentAddress-
es();

if (validUnsent != null) {
System.out.println

(" ** ValidUnsent
Addresses");

if (validUnsent != null) {
for (int i = 0;

i <
validUnsent.length; i++)

System.out.println
("

"+validUnsent[i]);
}

}
Address[] validSent =

sfex.getValidSentAddress-
es();

if (validSent != null) {
System.out.println

(" ** ValidSent
Addresses");

if (validSent != null) {

for (int i = 0;
i < validSent.length;

i++)
System.out.println

(" "+valid-
Sent[i]);

}
}

}
System.out.println();
} while ((ex = ((MessagingEx-

ception)ex)
.getNextException()) !=

null);
return false;

}
return true;

}

/**
* This is a simple replace method.

It
* searches for the keywords, and

uses
* a StringBuffer to replace them.
*
* @param macros The keywords and

values.
* @param message The message to

change.
*
* @return The changed message.
*/

public String replace (Hashtable
macros,

String mes-
sage) {

for (Enumeration e = macros.keys();
e.hasMoreElements();) {
int index = 0;
String key = (String) e.nextEle-

ment();
String value = (String)

macros.get(key);
while ((index =

message.indexOf(key, index))
!=-1) {

StringBuffer text =
new StringBuffer(message);

message = text.replace(index,
index + key.length(), value)
.toString();

index += value.length();
}

Listing 1

rmg@silentq.com

37OCTOBER 1999

Java COM

Cerebellum
www.cerebellumsoft.com

Java COM

38 OCTOBER 1999

}
return message;

}
}

/*
* MakeMessage.java
*/

import java.util.Hashtable;

/**
* This is a test class that creates

some
* MessageObjects to send with SendMes-

sage.
*
* @author Rachel Gollub (rachel@silen-

tq.com)
*/

public class MakeMessage {

/**
* The main method initializes the

objects
* and sends them.
*/

public static void main(String
args[]) {

SendMessage message = new SendMes-
sage();

MessageObject object =
makeObject("rachel@silentq.com",

"Rachel", "choco-
late");

message.send(object);
object = makeObject("jeremy@silen-

tq.com",
"Jeremy",

"chicken");
message.send(object);
object = makeObject("miriam@silen-

tq.com",
"Miriam",

"milk");
message.send(object);

}

/**
* This creates the actual MessageOb-

ject
* for each recipient, filling it

with
* standard and custom values.
*/

public static MessageObject makeObject
(String to, String name, String

food) {
MessageObject object = new Mes-

sageObject();
Hashtable macros = new Hashtable();
macros.put("$firstname", name);
macros.put("$favoritefood", food);

object.to = to;
object.custom = macros;
object.text =

"Dear $firstname,\n" +
"\n" +
"We'd like you to know that " +
"$favoritefood is on sale this

week!\n" +
"\n" +
"Sincerely,\n" +
"The Management";

object.subject = "SALE!";
object.host = "pop.idiom.com";
object.from = "rachel@silentq.com";

return object;
}

}

/*
* MessageObject.java
*/

import java.util.Hashtable;

/**
* This class holds message informa-

tion.
*
* @author Rachel Gollub (rachel@silen-

tq.com)
*/

public class MessageObject {
String to;
String from;
String host;
String subject;
String text;
Hashtable custom;

}

/*
* MailPrinter.java
*/

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;

import java.util.Enumeration;
import java.util.Properties;

import javax.mail.Address;
import javax.mail.FetchProfile;
import javax.mail.Flags;
import javax.mail.Flags.Flag;
import javax.mail.Folder;
import javax.mail.Header;
import javax.mail.Message;
import javax.mail.Multipart;
import javax.mail.Part;
import javax.mail.Session;
import javax.mail.Store;

/**
* This class monitors a given mailbox

every 5
* minutes, and prints the contents to

stdout.
* It will also optionally delete mes-

sages it
* reads. More detailed comments are

provided in
* the accompanying article.
*
* @author Rachel Gollub (rachel@silen-

tq.com)
*/

public class MailPrinter extends Thread
{

public static void main(String
args[]) {

// These args are <user>, <pass-
word>, <host>,

// <delete?true:false>
MailPrinter popThread =

new MailPrinter(args[0], args[1],
args[2],

args[3]);
popThread.start();

}

String protocol = "pop3";
String host;
String user;
String password;
boolean delete = false;

/**
* This just initializes the global

variables.
*/

public MailPrinter(String pUser,
String pPassword, String pHost,
String pDelete) {
user = pUser;
password = pPassword;
host = pHost;
if

(pDelete.toLowerCase().equals("true"))
delete = true;

}

/**
* The run() method makes a mailbox

connection
* every five minutes to check for

mail.
*/

public void run() {
while (true) {

doStore();
try {

Thread.sleep(300000);
} catch (Exception e) {

e.printStackTrace();
}

}
}

public void doStore() {
Properties lProperties =

System.getProperties();

Session lSession =
Session.getDefaultInstance

(lProperties, null);
// Set debug here
lSession.setDebug(false);

Store store = null;
Folder folder = null;
try {

store = lSession.getStore(proto-
col);

} catch (Exception e) {
System.out.println

("Couldn't get store from pro-
tocol.");

e.printStackTrace();
}
// Connect
try {

if (host != null || user != null
|| password != null)

store.connect
(host, user, password);

else
store.connect();

} catch (Exception e) {
System.out.println("Unable to

connect.");
e.printStackTrace();

}

// Open the Folder
if (folder == null)

try {
folder = store.getDefaultFolder();

} catch (Exception e) {
System.out.println

("Couldn't get folder.");
e.printStackTrace();

}
if (folder == null) {

System.out.println("No default
folder");

}

// Get the default folder
try {

folder =
folder.getFolder("INBOX");

if (folder == null) {
System.out.println("Invalid folder");

Listing 2

39OCTOBER 1999

Java COM

Object International
www.oi.com

Java COM

}

if (folder != null) {
folder.open(Folder.READ_WRITE);
int lTotalMessages =

folder.getMessageCount();

if (lTotalMessages == 0) {
System.out.println("Empty folder");
folder.close(false);
folder = null;
store.close();

}
}

} catch (Exception e) {
e.printStackTrace();

}

// Get and process messages
if (folder != null) {

try {
Message[] messages =

folder.getMessages();

for (int i = 0;
i < messages.length; i++) {
if (filter(messages[i])) {

if (delete)
messages[i].setFlag

(Flags.Flag.DELETED, true);
}

}
folder.close(true);
store.close();

} catch (Exception e) {
e.printStackTrace();

}
}

}

/**
* The filter() method tries to fig-

ure out the
* message type, and recursively

sends
* multi-part parts through the fil-

ter.
*
* @param part The message part.
*
* @return True iff successful.
*/

public boolean filter(Part part) {

Object o = null;

try {
for (Enumeration e = part.getAll-

Headers();
e.hasMoreElements();) {
Header header =

(Header) e.nextElement();
System.out.println(header.get-

Name() +
": " + header.getValue());

}
System.out.println("\n");
o = part.getContent();

} catch (Exception e) {
System.out.println

("Couldn't get content.");
return false;

}
if (o instanceof String) {

String lMessage = (String) o;
System.out.println(lMessage);
return true;

} else if (o instanceof Multipart)
{

Multipart lPart = (Multipart)o;
try {

int count = lPart.getCount();
for (int i = 0; i < count; i++)

return filter(lPart.getBodyPart(i));

} catch (Exception e) {
System.out.println

("Couldn't access parts.");
e.printStackTrace();

}
} else if (o instanceof Message) {

return filter((Part)o);
} else if (o instanceof Input-

Stream) {
BufferedReader lReader = new

BufferedReader
(new InputStreamReader((InputStream)
o));

int c;
StringBuffer lBuffer = new

StringBuffer();
try {

while ((c = lReader.read()) != -1)
lBuffer.append((char) c);

lReader.close();
} catch (Exception e) {

System.out.println("Read error.");
e.printStackTrace();

}

System.out.println(lBuffer.toString());
return true;

}
return false;

}

}

Java COM

When Bruce Scott
(cofounder of ORACLE)
started PointBase, Inc.
he chose
Java Developer’s Journal
as PointBase’s exclusive
advertising partner!

We Know How to Create Success Stories!

Java COM

41OCTOBER 1999

VSI
www.vsi.com/breeze

Java COMJava COM

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

SHOP ONLINE AT JDJSTORE.COM FOR BEST PRICES OR CALL YOUR ORDER IN AT 1-888-303-JAVA

EASTLAND DATA SYTEMS

Internet Shopping with
Java Shopping Cart
…Described as the most progressive and interac-
tive form of shopping on the web today…This
Java Applet provides a com-
plete user interface package for
Internet Shopping Web Sites.
Using Java technology we pro-
duce a drag-and-drop shopping
user interface that is fun and
easy to use, encouraging shop-
pers instead of frustrating them
with confusing controls that are hard to follow. And
the easier it is to shop, the more you sell.
. $29499

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

888-303-JAVAORDER TODAY!

Guaranteed Best Prices
JDJ Store Guarantees the Best Prices.
If you see any of our products listed anywhere at a
lower price, we'll match that price and still bring
you the same quality service.

Terms of offer:
• Offer good through November 30, 1999
• Only applicable to pricing on current

versions of software
• August issue prices only
• Offer does not apply towards errors in

competitors' printed prices
• Subject to same terms and conditions

Prices subject to change.
Not responsible for typographical errors.

Attention Java Vendors:
To include your product in JDJStore.com,
please contact jackie@sys-con.com

Hybrid Shopping Cart
This Java Applet provides a complete user inter-
face package for Internet Shopping Web Sites. A
"Hybrid" is defined as an offspring of two varieties.
A blending of the best features from our CGI and
Java shopping products, we
took the most powerful aspects
of Java technology; real-time,
on-screen updating and com-
putational capabilities. And
combined those with the most
desirable features of our CGI
shopping Cart, namely it's flexibility and compati-
bility with web designers with artistic talent.
. $29499

CGI Shopping Cart
The Shopping Cart automates the Shopping
Process to make shopping on your site intuitive,
straight forward, and enjoyable! It's one of the
most affordable Shopping Carts
because it was designed for
small businesses. Specifically
for entrepreneurs who are test-
ing the Internet waters, and
can't or don't want to make
large investments into bells and
whistles for their site. But simply want to make
shopping on their site easy for the customer.
. $29499

Take a look
at our specials

this month!

Take a look
at our specials

this month!

SYBASE
PowerBuilder Enterprise v.7

Release 7.0 of the market-leading enterprise
development environment offers significant
productivity enhancements and broad support for
Web-based component standards. With the new
HTML DataWindow, you can deploy to all major Web
browsers. Tight integration in both development and
deployment with EAServer offers highly competitive
reliability, availability, and scalability (RAS) for PB
applications developed for the Web.

PowerBuilder Enterprise v.7 . $278999

PROTOVIEW
JSuite v2.5

JSuite, a low priced bundle of four of the industry's leading JavaBeans component
products. It includes: CalendarJ: Calendar Display Component. DataTableJ: The
Fastest Grid Component On The Net! Tree-
ViewJ: Feature-Rich TreeView Component.
WinJ Component Library: A Series Of UI
Components.

The JSuite comes with both JDK 1.02
Classes and JAR files with support for Java
2 and JDK 1.1.x Source Code is also available.

JSuite v2.5 . $79499

SYBASE
PowerJ Enterprise

PowerJ provides a true end-to-end solution for
building sophisticated Internet applications,
exploiting the benefits of HTML, Java clients, and
delivering powerful Java server-side components.
PowerJ not only offers powerful database
capabilities -- it also integrates seamlessly with
Sybase Enterprise Application Server, enabling
enterprise-class applications from creation, to
testing and debugging, to deployment.

PowerJ . $30499

BLUE SKY SOFTWARE
RoboHELP Office 2000

Now You Can Create a High-Quality Custom Java-
Help System with RoboHELP Office. RoboHELP Office
provides a user-friendly WYSIWYG authoring environ-
ment for creating JavaHelp. RoboHELP guides you
through the process so you can create a great Java-
Help system - with point-and-click and drag-and-
drop ease. Now you can create JavaHelp systems as
easily as you create WinHelp, Microsoft HTML Help,
and WebHelp (cross platform Help) from the same
source product - all with RoboHELP Office.

RoboHELP Office 2000 . $88899

SYMANTEC’s
Visual Café

Professional Edition
JDJStore.com Price . . $25899

COMPARE...
Programmer’s Paradise Price $25995

Beyond.com Price $29975

IBM’s
VisualAge for Java 2.0

Enterprise Edition
JDJStore.com Price . . $2,49899

COMPARE...
Programmer’s Paradise Price $2,49900

Beyond.com Price $2,52500

BORLAND’s
JBuilder 3

Professional New User
JDJStore.com Price . . $49999

COMPARE...
Programmer’s Paradise Price $54599

Beyond.com Price $54899World class
 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

World class
 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

World class
 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

SHOP ONLINE AT JDJSTORE.COM FOR BEST PRICES OR CALL YOUR ORDER IN AT 1-888-303-JAVA

INSTANTIATIONS
JOVE Starter Kit

The JOVE Super Optimizing Deployment
Environment lets you create and deploy the
world's fastest, most efficient Java applica-
tions. JOVE combines aggressive whole-
program and object-oriented optimization
technologies, native compilation, and a scaleable runtime architecture
and deployment environment. The runtime system includes state-of-the-
art multithreaded generational garbage collection, native multi-threading,
low overhead polymorphism, and a number of other incredible technolo-
gy pieces. As a result of all this technology, JOVE enables the creation of
very high performance, robust executable files for the deployment of
very large, complex Java applications.

JOVE Super Optimizing Deployment Environment. . . . $449499

INSTALLSHIELD
InstallShield Java Edtion 2.5

InstallShield Java Edition 2.5 is the
powerful tool developers require to
produce bulletproof InstallShield instal-
lations with Java versatility. You can
target your application for multiple sys-
tems with cross-platform distribution.
And InstallShield Java Edition 2.5
offers the key features and functionali-
ty designed to let developers go further
in distribution and deployment.

InstallShield Java Edition $47499

CLOUDSCAPE INC.
Cloudscape Single User

Developer License
Building on its technology lead as the industry's first embeddable Java˙
database designed for distributed, off-line, and mobile computing, Cloud-
scape Release 2.0 is designed to support eBusiness applications such as
"smart" eCatalogs and supply chains. Enhancements in 2.0 include: *Multi-
user concurrency that supports
hundreds of users. *Advanced
security that enables only autho-
rized applications to read data.
*Substantially faster load of initial
information into the database
Cloudscape 2.0 is bundled with Cloudview (a schema browser utility.
Includes one year of support from the Cloudscape services organization.

Cloudscape Single User Developer License $89499

WWW.JDJSTORE.COM

GUARANTEED
BEST PRICES
FOR ALL YOUR
JAVA-RELATED
SOFTWARE
NEEDS

World class
 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

BUY THOUSANDS
0F PRODUCTS AT

GUARANTEED
LOWEST PRICES!

KL GROUP
JProbe Suite

JProbe Profiler is the most powerful tool available
for finding and eliminating performance bottle-
necks in your Java code. JProbe Coverage makes
it easy to locate individual lines of untested code
and reports exactly how much of your Java code
has been tested. JProbe Threadalyzer lets you
pinpoint the cause of stalls and and deadlocks in
your Java applications and makes it easy to predict race conditions that can
corrupt application data.

JProbe Profiler w/Standard Support
(includes JProbe Memory Debugger) $46499

JProbe Suite w/Standard Support $93499

IBM
WebSphere Application Server

Whether it's business integration, Web self-service or e-commerce, IBM
WebSphere Application Server provides the software and tools for build-
ing and deploying Web-based applications. With Standard, Advanced and
Enterprise editions, Application Server supports all your e-business
needs, from simple Web transaction processing to enterprise-wide Web
applications. An open, extensible solution providing the highest levels of
performance, security, availability and scalability, WebSphere Application
Server leverages your existing IT investment to create new opportunities
- now and into the future

WebSphere Application Server Standard Edition v2.02
. $66899

ALLAIRE
ColdFusion 4.0

With ColdFusion 4.0, create Web applications
for self-service HR solutions, online stores,
interactive publishing and much more. The
integrated development environment that has
all the visual tools you need to create Web
applications quickly and easily. From simple
to sophisticated ColdFusion gives you the
power to deliver the Web solutions you need-
faster, and at a lower cost.

ColdFusion 4.0 . $35499

SkillBuilding with ColdFuion Interactive Training CD. . . . $28499

SYBASE
SQL Anywhere Studio

JRun is the industry-leading tool for deploy-
ing server-side Java. JRun is an easy-to-use
Web server “plugin” that allows you to
deploy Java Servlets and JavaServer Pages.
Servlets form the foundation for sophisticat-
ed server-side application development. Java
servlets are platform independent, easy to
develop, fast to deploy, and cost-effective to
maintain.

SQL Anywhere Studio 1 user price $33599

SQL Anywhere Studio 5 user price $84999

ORACLE
JDeveloper Suite Personal Edition

Oracle JDeveloper Suite 2.0 provides a complete Java development
environment for developing and deploying applications ranging from
Java and HTML clients to server-based business components for the
Internet computing platform. JDeveloper 2.0 supports application devel-
opment based on industry-standard Enterprise JavaBeans (EJB) and
CORBA component models. Using intuitive and easy-to-use wizards, the
product provides full support for a rich set of Java standards – servlet,
JDBC, SQLJ, InfoBus and JFC/Swing. JDeveloper 2.0 comes with a
servlet engine that allows servlets to be developed and tested within
JDeveloper.

JDeveloper Suite Personal Edition. $11999

GALILEO DEVELOPMENT SYSTEMS
Intr@Vision Foundation

Intr@Vision Foundation helps bring ColdFusion development to the next
level. It provides an out-of-the-box application security architecture for
handling your most complex
intranet and extranet needs.
Instead of spending 30% of your
development time adding security
to every application you build, it
gives you a proven solution with a
single line of code. Intr@Vision
Foundation allows your developers
to focus on building business
solutions, not infrastructure.

Intr@Vision Foundation $349999

INTUITIVE SYSTEMS
Optimizeit 3.0 Professional

Optimizeit provides a pow-
erful solution for developers
looking to rapidly track down
and fix performance issues in any Java pro-
grams. Optimizeit offers complete profiling
capabilities including memory leak debugging, CPU profiling and moni-
toring of object allocations. Easy to use, comprehensive and accurate,
Optimizeit provides real-time thorough information about CPU and mem-
ory usage, presented in easy-to-read graphs and relevant metrics. Using
Optimizeit, developers get complete, coherent information on any part of
their program down to the responsible line of source code.

Optimizeit 3.0 Professional $44899

ALIVE.COM
Alive e-Show 1.1

Alive e-Show is an easy, cost effective desktop application that allows
non-technical PC users to create and publish streaming media e-shows
to the Web. Using Alive e-Show, employees can create new content,
integrate existing media, and publish it to the Web with a single click.
It's a great way to integrate slides, digital photography, animation, syn-
chronize audio and video, add hyperlinks, and supplement with closed
captions. Create e-shows quickly and easily. You create slides in outline
mode, record audio and video, and format the e-show using predefined
templates with slide styles and placeholders for closed captions too.
Allaire HomeSite® is included free, further simplifying any extra cus-
tomization you may need using this HTML editor.

Alive e-Show 1.1 . $55899

ALLAIRE
HomeSite 4.0

HomeSite is the award-winning HTML edit-
ing tool that lets you build great Web sites
in less time, while maintaining Pure HTML.
Unlike WYSIWYG authoring tools, HomeSite
gives you precise layout control, total design
flexibility and full access to the latest Web
technologies, such as DHTML, SMIL, Cas-
cading Style Sheets and JavaScript. Home-
Site 4.0 is the only HTML editor featuring a
visual development environment that pre-
serves code integrity.

HomeSite 4.0 . $8799

Java COM

44 OCTOBER 1999

Distributed applications written in Java using the
EJB model to build reliable and scalable systems

WRITTEN BY
FRANK GATES

Enterprise Java at Syracuse University

T
Today’s universities are recognizing the desirability of providing many staff functions for their students
through a Web interface. Self-service applications allow students to enroll in courses, manage their
personal information and examine their class schedules – and save the university time and expense for
staff that would otherwise perform these tasks. In April 1999 New York State’s Syracuse University
went online to accomplish these activities over the Internet with a self-service application based on
Enterprise JavaBeans technology. Here’s how it was done.

E J B C A S E H I S T O R Y

The Requirements
Syracuse University had bought a new

online student information system (SIS)
from a leading software vendor. Unfor-
tunately, the system didn’t provide an
adequate Web interface, and it was built
from the point of view of administrators,
not students, complicating how a Web-
based solution could be developed.

The university sought a Web-based
student self-service interface for its new
system and had an extensive list of
requirements for the application. The
interface had to be easy to use and
responsive over modem connections,
and it had to work with all popular
browsers. The application had to be
platform independent and use distrib-
uted, scalable technology. It also had to
be highly reliable as it would be running
24/7. Further, the application had to be
implemented using standards-based
technology such as EJB. Most important,
the Web interface had to be capable of
reliably enrolling all of Syracuse Univer-
sity’s 15,000 students during its open
enrollment period.

Syracuse also required an application
vendor that would provide first-rate
technical support.

It became clear that development of
an application that adapted the SIS to
the Web would require a substantial
effort. A clear separation between the
business logic and presentation layer
would be needed to enable customiza-
tions without affecting the application
logic. EJB promotes this separation. In
addition, standard Java-based technolo-
gies such as Java Servlets and Java Serv-
er Pages (JSP) would be needed to write
the presentation layer. As Java is plat-
form independent (particularly on the
server) and largely vendor independent,
an application based on standard Java
technologies would be the best fit for
this distributed Web application.

In September 1998 Syracuse selected
Student Affairs, a Web application from
Interactive Business Solutions (IBS), to
fulfill their requirements. This applica-
tion provides a scalable Web-based solu-
tion through the use of servers that are
specialized in communicating with the

SIS used at Syracuse. Scalability is
achieved through its multilayer archi-
tecture, where each layer fulfills a specif-
ic responsibility.

Student Affairs’Application Architecture
The application architecture devel-

oped by IBS can be used to develop new
applications and to adapt, as Student
Affairs does, to third-party applications.
The outermost layer is the application
user interface. For simplicity, the user
interface is a commonly available
browser (Internet Explorer 3.0 or later
and Netscape 3.0 or later). The presenta-
tion layer consists of servlets running on
a servlet-enabled Web server. This archi-
tecture also supports the use of JSP and
HTML/Java (JHTML). Applets can also
be used. (Student Affairs uses one small
applet to facilitate the enrollment
process.)

Student Affairs’ servlets constitute a
very thin presentation layer for the SIS
data, which allows the user interface
designer to focus on designing displays
that communicate SIS content to the

FIGURE 1: Online student information environment

sllaCCBDJ

HTML or Applet

Browser
EJB

Application
Server

SIS
Interface
Server

SIS
Interface
Server

SIS
Interface
Server

SIS
Interface
Server

Web
Server

SIS
Interface
Manager

Student
Information

System

Database
Server

HTML EJB
Calls

* SIS Interface Manager: Load balances calls to
the Student Information System Interfaces

* SIS Interface: Understands how to communicate
with the Student Information System.

* Student Information System (SIS): The enter-
prise student information application

45OCTOBER 1999

Java COM

MetaMata
www.metamata.com

Java COM

46 OCTOBER 1999

students. The resulting presentation
layer can be a rich user interface that
guides students seamlessly through the
enrollment process yet is not overly con-
cerned with how the enrollment is
accomplished.

The EJB Application Server is respon-
sible for executing all the business logic
of an application. In the case of this
application, however, the SIS contains
the business logic; the application’s EJB
is a thin layer that makes calls to the SIS
via the SIS Interface Manager with para-
meters it receives from the application
servlets. In some cases EJB makes direct
read-only SQL calls to the SIS’s database,
either to increase performance or sim-
ply to access data that may not be avail-
able through the SIS interfaces. The
results are returned to the servlet, which
then formats and displays the results.

The EJB Application Server commu-
nicates with the SIS through two addi-
tional layers. EJB communicates directly
with the SIS Interface Manager, which
load-balances calls from the EJBs to
multiple SIS Interface Servers that per-
form the actual API calls to the SIS.

With the exception of the user inter-
face layer, which is an Internet browser,
a specific server manages each layer in
the application. For instance, the pre-
sentation layer runs on a Web server,
and the business logic is in EJBs on the
EJB Application Server. These servers
can operate on separate computers, and
there can be multiple servers for each
layer. This obviously increases perfor-
mance and reliability. Because the
servers don’t have to run on the same
kind of computer (thanks to Java), a uni-
versity can choose the equipment that’s
best for each server.

Syracuse and Student Affairs
Student Affairs was installed in Octo-

ber 1998. Syracuse chose to install the
Web server, EJB Application Server, SIS
Interface Manager and SIS Interface
Servers on separate multiprocessor NT
servers. While the Web server and EJB
Application Server could be installed on
any computer that supports Java, the SIS
Interface Manager and SIS Interface
Servers required installation on NT
servers due to the SIS API server require-
ments.

During the six months before Syra-
cuse did its first online registration, the
university spent its time customizing
the appearance of the application and
testing the application components.

Because Student Affairs is designed to
function at any university using the stu-
dent information system, it has a large
set of items that are customizable,
including color preferences for pages,

links, text and tables. The banner title
and logo are also customizable, and a
university can readily customize the
footer of each page in the application.
Each item can be modified without
changing any source code.

Syracuse University modified the
appearance of the Web application
extensively, supplying the university’s
logo, using school colors for the menu
buttons and providing thorough infor-
mational text for the customized footers
on each page. The university also pro-
duced a companion Web site that pro-
vided online instruction on how to use
the new application.

The university’s tests were in two gen-
eral arenas: functional testing of the
application and performance testing.
During the former they sought to deter-
mine whether the application worked (a
validation test); during the latter, whether
it worked in a desirable manner (a usabil-
ity test). Any bugs were reported to IBS.

Usability issues were also reported.
Items judged useful for any university
were performed at no charge; items
deemed unique to Syracuse were con-
sidered chargeable and were performed
with the university’s approval. All work
items – bug fixes and usability items –
were then scheduled for repair accord-
ing to how critical the defect was.

Syracuse also spent several months
doing performance testing of the appli-
cation components, which demonstrat-
ed that testing in a production-like envi-
ronment is essential. The SIS was the
first to be tested. The rationale was that
if there was a bottleneck in the back end,

testing from the Web server could hide
or exacerbate the problem. Back-end
testing exercises the SIS, the database
server and the IBS SIS Interface Servers.

Back-end testing simulated thou-
sands of concurrent enrollments per
hour. The system was severely overtaxed
and performed poorly. Initially, the SIS
Interface Servers weren’t running in a
full production environment. Additional
computers were installed, and the tests
were repeated. No further problems
were discovered with the SIS Interface
Servers during these tests. However,
intermittent communication problems
between the SIS Interface Server and the
SIS Interface Manager were discovered
independently by IBS, and the servers
were updated at Syracuse.

The SIS and the database servers were
still underperforming during these tests.
Syracuse spent two months testing and
fine-tuning these servers to achieve ade-
quate performance. Once sufficient per-
formance began to be achieved by the
back end, front-end testing of the Web
server and EJB Application Server was
started. Several problems were discov-
ered and remedied at this time.
• The heap size of the Web server and

EJB Application Server needed to be
expanded. The default maximum heap
size, 16MB, was expanded to 128MB.

• Following one update of the EJB
Application Server, the server was
found to be leaking memory, which it
had not been doing before. A seem-
ingly minor change in the server
uncovered a memory problem in
which circular references between
different EJB components prevented
garbage collection of EJBs and many
resource classes. The server logic was
corrected and a new update was
quickly made.

• Two deadlocks were discovered
between threads competing for server
or EJB resources.

• Unlimited users would saturate the
Web and EJB servers. Configurable
limits were added to control the num-
ber of users accessing the system.

Summary
The Syracuse University experience

successfully demonstrates that distrib-
uted applications written in Java using
the Enterprise JavaBeans model can
build reliable and scalable systems. The
multilayer EJB architecture was essen-
tial in enabling the university to go
online on time. In addition, the cooper-
ative spirit between the university and
IBS accelerated the testing process and
significantly improved the product.

fgates@interactivebusiness.com

The cooperative
spirit between
the university

and IBS
accelerated the
testing process

and significantly
improved

the product.

‘‘

’’

AUTHOR BIO
Frank Gates, a software
developer for 20 years,

currently works for
Interactive Business
Solutions.The senior

consultant on the team
that developed the IBS
Enterprise Application

Server and the Student
Affairs application on

which this article is based,
he is also on the team

developing the next
version of the EAS.

E J B C A S E H I S T O R Y

47OCTOBER 1999

Java COM

Riverton

Java COM

48 OCTOBER 1999

Object
www.objcetdes

Design
sign.com/javlin

49OCTOBER 1999

Java COM

When we last talked, I promised to finish up the CodeDocu-
ment class I’d so abruptly left behind back in July (JDJ Vol. 4,
issue 7). Now, due to millions of desperate letters from fans
around the globe, I’ve decided to finish off the series in this
article, tackling reflection once again and ending with a text
component that supports syntax highlighting and a simplified
version of something similar to Borland’s Code Insight. Along
the way we’ll see a few more tricks that JTextArea can do, and
in general we’ll just go hog wild in code!

A Refresher on Reflection
Those of you who read my last article can just skim through

this part. For the others I’ll try to explain, quickly, what reflec-
tion is and why we need it for this article.

Reflection allows object A, which is interested in object B, to
interogate object B for any information object A is interested
in at runtime – without having the source code on the
machine. Interested in what attributes the object has? No
problem, just use reflection. Wondering if the object has a par-
ticular method? Again, no problem, just use reflection. Now
that you know the object has a particular method, you want to
know what parameters the method requires. Just use reflec-
tion! Now you know what the parameters are for the method,
but you want to know what your spouse is thinking? Just
use...oh, wait, that doesn’t work.

Well, anyway, reflection is one of the cooler features in the
Java language (and oh, how I wish C++ had the same thing!).
Used properly it offers some great benefits. Obviously, for
development tools that need to know all sorts of details about
the objects being manipulated, this is great. Other uses might
be to generate SQL automatically based on some metadata
scheme (this was a technique one of the developers used in a
project I was on recently). When you use tools like Borland’s
JBuilder, the ability of the Inspector to “know” exactly what
properties to display for a given UI component is based com-
pletely on reflection. So how do we use it? To start, you need to
get the Class object from whatever object you’re interested in.
Let’s take a look at the code below.

Vector v = new Vector(); //this is the object we want to
//learn more about through
//reflection

Class aClass = v.getClass();

Any object could have been chosen (Vector, JComponent or
any other valid Java object), and once we have a valid instance
we call the getClass() method to get the object’s Class instance.
The Class object serves as the starting point for obtaining all
sorts of information, such as all the constructors for that
object or all the declared methods – or even all the fields
(attributes) of the object. Let’s look at what we do once we get
a method from the list of declared methods for the object:

Method[] methods = aClass.getDeclaredMethods();
for (int i=0;i<methods.length;i++){

Method aMethod = methods[i];
System.out.println(aMethod.getName());

}

All we have to
do, once we have a
Class object, is call
the getDeclared-
Methods() function,
which returns an
array containing all the
declared methods of the
class (this includes methods
declared as private!). Once we have this array we can iterate
through all of the elements in the array calling the Method
class’s getName() method. If we’re interested in determining
the accessibility of a particular method, we can use the get-
Modifiers() function:

int mods = aMethod.getModifiers();
System.out.println(Modifier.toString(mods) + " " +
aMethod.getName());

If we’re interested in the parameters a method took, we can
do the following, using the Method class’s getParameters(),
which returns an array of Class objects representing the argu-
ments to the method:

Class[] params = aMethod.getParameters();

We can also invoke methods dynamically on an object by
using reflection. First we retrieve the desired method as we did
above or by using the Class class’s getDeclaredMethod (which
is useful if you already know the name and parameters of a
particular kind of method – for example, say you were trying
to determine if a series of objects has a method called “setText”
that takes a single parameter of type String). Then we create an
array of Object and call the Method class’s invoke() method.

Class[] argParams = new Class[1];
argParams[0] = Object.class;
aMethod = aClass.getDeclaredMethod("addElement", arg-
Params);

Object[] argVals = new Object[1];
argVals[0] = new String("A New String Object !");
aMethod.invoke(v, argVals);

The first part of the code gets a single method from the
aClass variable and then prepares to invoke the method. The
argVals array has its first element set to a new instance of a
String, and then the invoke method is called: the first parame-
ter is the object that the method is being invoked on (in this
case our Vector variable from before), and the second parame-
ter is the object array of method arguments (methods that take
no arguments could just pass in null).

So we’ve looked very quickly at a simple example of how to
retrieve information about an object, all of it done at runtime,
using reflection. Remember to import the java.lang.reflect
package into your code to do your experiments. Now we’ll
move on to the CodeDocument and how we’ll start hooking
this all together.

A Return to Reflection

WRITTEN BY
JIM CRAFTON

Java COM

50 OCTOBER 1999

Adding advanced features to the CodeDocument
class à la Borland’s CodeInsight

Java COM

Java COM

52 OCTOBER 1999

When a State Isn’t a State (and Other Dumb Plays on Words...)
For the CodeDocument to do its work it has to know its cur-

rent state – in other words, not only what word you’ve just
typed in (or inserted), but whether or not you’re just typing in
the package name, typing in imports, creating a class declara-
tion or creating variables in code within a method. The docu-
ment also has to know what type the variable is as well as
whether you’ve worked with it before so it can look it up if nec-
essary. Obviously, this could get quite complex, and to make
this function as a production tool you’d end up with a sophis-
ticated state machine and parser to work all this out. In the
interest of time (yours) and energy (mine), I’m going to devel-
op a simplified version of this that should serve as a possible
model or at least inspire you to feats greater than mine.

So, back to State. To keep track of the state of what you’re
typing in, I’ll introduce several new constants as well as a
number of new variables to keep track of it all.

To save the information for future use, we’ll create several
small classes to hold the information for us, namely, class
CodePackage to hold information about the package just cre-
ated; class CodeClass for the outer public class that’s normally
created; and class ClassElement, which will hold all the
dynamically discovered fields and methods we display in our
drop-down listbox. To simplify all the reflection code we’ll use
a class called ClassLister, which will do all the reflection work
whenever we encounter a possible need to get at the informa-
tion.

The following code shows the possible states we’ll keep
track of in the CodeDocument:

private static final int STATE_TEXT_INPUT = 10;
private static final int STATE_CLASS_INPUT = 11;
private static final int STATE_VARIABLE_INPUT = 12;
private static final int STATE_PACKAGE_INPUT = 13;
private static final int STATE_IMPORT_INPUT = 14;
private static final int STATE_VARIABLE_TYPE_INPUT = 15;

The generic default state (STATE_TEXT_INPUT) represents
typing in text, as I’m doing right now. STATE_PACK-
AGE_INPUT defines when the CodeDocument determines
that the user is typing in a package name. This is needed for
the reflection to pick classes just created in the package.
STATE_IMPORT_INPUT is used to describe when the user is
typing in the name of an imported package, like “java.lang.re-
flect.*”, for instance. STATE_CLASS_INPUT signifies the cre-

ation of the new outer class. STATE_VARIABLE_TYPE_INPUT
and STATE_VARIABLE_INPUT are used to determine when a
variable or variable type is entered. As the user types, the state
will also be changed, which is handled by the checkForState-
Change() method inside the processChar() method. Inside
checkForStateChange() the method looks at what kind of
character has been passed in and then makes a call to check-
State(), which either ouputs diagnostic information or adds
the appropriate data to model being built up. Then check-
ForStateChange() calls the changeState() method, which actu-
ally changes the CodeDocument’s state. Depending on the
character passed in, checkForStateChange() may also call
other methods to handle things like a “.” or a “(”, both of which
can cause reflection to take place. Figure 1 shows this in dia-
grammatic form.

The handleDot() and handleOpenParen() methods will be
discussed in more detail in the next section, as these are
responsible for triggering events.

Events
The CodeDocument now both triggers and listens to events

in this new version. Every time the handleOpenParen()
method is called, the MethodEvent is fired, via the fireMeth-
odEvent method. This allows outside controls to be notified
whenever the CodeDocument is ready to display the argu-
ments of a method, similar to what happens in JBuilder when
you type in a method and then type the “(” character and the
tool tip pops up with all the method’s arguments. Outside con-
trols interested in this event can use the CodeDocument’s
addMethodListener() method to register themselves as listen-
ers to the documents event, assuming they implement the
MethodListener interface given in Listing 1.

The document also listens to events, which is how the
drop-down list with the available methods for a given object
works. If the handleDot() method is called, the CodeDocu-
ment gets the current position and extracts the appropriate
text (see the earlier JDJ articles pertaining to the CodeDocu-
ment for exactly how this is done) until the class name is
found for the variable in question. This is currently the
Achilles heel of the whole thing, and those of you interested in
making this more sophisticated will want to start improving
this part, but it works for our purposes. Once the class name
is found, a new set of attributes is created and the classLister
attribute’s setClassName() method is called, which sets the
classLister’s class name attribute. To retrieve all the info, the
method then calls the classLister’s listAll() method, which
returns a Vector containing a list of ClassElement objects
(which are simply convenient ways to store all the method or
attribute data).

Now that all the data is put together, we can go ahead and
create our drop-down list. But wait, you say. Where on earth
are you going to put it? And how? Patience, my young one, all
in good time!

One of the neat features of the Document model class is the
ability to insert not only text of different formats, but also visu-
al components, like drop-down listboxes. To do this we use the
SimpleAttributeSet class and create a new instance. Then,
using the StyleConstants class’s static method setCompo-
nent(), we pass in our newly created list box and the attribute
set we just created. Let’s look at the code in Listing 2.

The setComponent() method attaches the newly created
JComboBox to inputAttributes object. To make this show in
the document, we use the insertString() method at the current
position plus one, with a space (“ ”), and passing in the
attribute set. Notice that we’re calling the super classes insert-
String() method. Otherwise we’d end up cycling through all
our code, which we don’t need to do at this point.

FIGURE 1

53OCTOBER 1999

Java COM

Force 5
www.force5.com

Java COM

54 OCTOBER 1999

The other thing that’s important is to register the CodeDoc-
ument as a listener to the JcomboBox. This is done so the
CodeDocument knows when the user has selected an item
from the list and can safely remove the JComboBox and insert
the selected text back into the document. Which is why, as
you’ll see in Listing 3, the declaration for the CodeDocument
class has also changed, and yet another method has been
added.

The ClassElement stores the information about any of the
methods or attributes in the list. The Element value, which
stores the actual name of the attribute or method, is retrieved.
After this, the combo box is removed and the string retrieved
from the ClassElement is put in its place.

The ClassLister
The ClassLister class is at the heart of all the reflection that

goes on in the CodeDocument. Its primary method is the
listAll() method, which uses the ClassLister currentClass-
Name attribute to attempt to return a Vector containing a
complete listing of all methods and attributes belonging to
the class named from the currentClassName attribute. The
first thing the listAll() method tries to do is obtain a Class
object from the currentClassName String. This is done via the
Class class’s static method classForName(), which takes a fully
qualified class name and attempts to return a valid Class
instance. A fully qualified classname would be something like
“java.util.Hashtable” or “com.sun.java.swing.JListBox”. Since
the String parameter to the listAll method may not be a fully
qualified name, the ClassLister keeps track of a list of pack-
ages it knows about. Thus, if the first try of the class match
fails, the listAll() method catches the exception and tries
prepending the package names it knows about to the current-
ClassName until a Class instance is successfully created or it
runs out of package names, in which case the method fails. If
the method does create a Class instance, it uses reflection, as
discussed above, to add all the method and attribute names
to a Vector, packaging each method or attribute into a Class-
Element object that is added to the Vector list and then
returned.

ClassLister has several other methods:
• listMethods(), which does something similar to listAll(),

except it only returns methods
• listMethodArgs(), which, given a method name, tries to list

out the arguments for the method

• isNameAClass(), which returns true if the supplied String is
a class (like listAll(), the String passed in to isNameAClass()
does not have to be a fully qualified class name), or false if
the String is not a class name.

• addPackage, which adds a package name to its internal list
(a Vector) of known packages

Tying It All Together
Let’s make a simple test application to try this out. Listing 4

shows how it works. Although it looks a bit long, it’s actually
pretty simple. The main() creates new instances for a frame
(class TestFrame – we’ll get to that in just a bit), an editor (the
infamous JTextArea component) and the doc (our beloved
CodeDocument). A keywords list, of type Vector, is created and
all the Java keywords are added to it (this is what takes up the
bulk of code). The CodeDocument setKeywords() method is
called to set the CodeDocument’s keyword list. The frame is
then registered as a listener to the CodeDocument by the
addMethodListener() method. The editor’s Document model
is set with a call to setDocument(), which sets the CodeDocu-
ment as the editor’s Document model. The frame size is then
set and…we’re done!

If you run this, remember to type a few nonkeyword char-
acters (like “//” followed by the actual text). Otherwise you’ll
encounter a known bug, which can be looked up on the
Swing Web site (for more information look at http://develop-
er.java.sun.com/developer/bugParade/bugs/4128967.html).

Conclusion
We’ve now covered how to make our CodeDocument,

highlight use, defined syntax, control, numbers, strings and
comments. Along the way we’ve added code completion (à
la JBuilder’s Code Insight) and method hints using the
magic of Java’s reflection classes. We’ve learned how to use
the power of reflection to build the start of a really useful
tool as well. I hope you found this as interesting a topic as I
did !

AUTHOR BIO
Jim Crafton is part of the research and development team at Improv Technologies
(www.improv-tech.com), helping to develop a new production-quality animation tool. He also
develops advanced graphics software that can be seen at www.one.net/~ddiego/.

public class MyLabel extends JLabel implements MethodListen-
er{

...//code
public void methodAction(ActionEvent e){

this.setText(e.getActionCommand());
}

}

...//more code
MyLabel aLabel = new MyLabel();

JTextArea editor = new JTextArea(new CodeDocument());
CodeDocument doc = (CodeDocument)control.getDocument();
doc.addMethodListener(aLabel);

SimpleAttributeSet inputAttributes = new SimpleAttribute-
Set();
..//more code...
try{

JComboBox c = new JComboBox();
c.addActionListener(this);

StyleConstants.setComponent(inputAttributes, c);

super.insertString(currentPos + 1, " ", inputAttributes);
}
catch (Exception ex){

ex.printStackTrace();
}

public class CodeDocument extends DefaultStyledDocument
implements ActionListener{

..//more code

public void actionPerformed(ActionEvent e) {
try{

JComboBox comp = (JComboBox)e.getSource();
ClassElement elem = (ClassElement) comp.getSelect-
edItem();
String item = elem.getElementValue();
this.remove(listOffs, 1);
super.insertString(listOffs, item, null);
currentMethod = item;

}
catch (Exception ex){

ex.printStackTrace();
}

}

Listing 3

Listing 2

Listing 1

ddiego@one.net

55OCTOBER 1999

Java COM

American
Cybernetics

www.multiedit.com

Java COM

56 OCTOBER 1999

package CodeEditor;

import com.sun.java.swing.*;
import java.util.*;
import java.awt.event.*;
import java.awt.*;

public class Application1 {

public static void main(String[] args) {
TestFrame frame = new TestFrame();
TextPane editor = new JTextPane();
CodeDocument doc = new CodeDocument();

Vector keywords = new Vector();

keywords.addElement("abstract");
keywords.addElement("boolean");
keywords.addElement("break");
keywords.addElement("byte");
keywords.addElement("byvalue");
keywords.addElement("case");
keywords.addElement("cast");
keywords.addElement("catch");
keywords.addElement("char");
keywords.addElement("class");
keywords.addElement("const");
keywords.addElement("continue");
keywords.addElement("default");
keywords.addElement("do");
keywords.addElement("double");
keywords.addElement("extends");

keywords.addElement("else");
keywords.addElement("false");
keywords.addElement("final");
keywords.addElement("finally");
keywords.addElement("float");
keywords.addElement("for");
keywords.addElement("future");
keywords.addElement("generic");
keywords.addElement("if");
keywords.addElement("implements");
keywords.addElement("import");
keywords.addElement("inner");
keywords.addElement("instanceof");
keywords.addElement("int");
keywords.addElement("interface");
keywords.addElement("long");
keywords.addElement("native");
keywords.addElement("new");
keywords.addElement("null");
keywords.addElement("operator");
keywords.addElement("outer");
keywords.addElement("package");
keywords.addElement("private");
keywords.addElement("protected");
keywords.addElement("public");
keywords.addElement("rest");
keywords.addElement("return");
keywords.addElement("short");
keywords.addElement("static");
keywords.addElement("super");
keywords.addElement("switch");
keywords.addElement("synchronized");
keywords.addElement("this");
keywords.addElement("throw");

keywords.addElement("throws");
keywords.addElement("transient");
keywords.addElement("true");
keywords.addElement("try");
keywords.addElement("var");
keywords.addElement("void");
keywords.addElement("volatile");
keywords.addElement("while");

doc.setKeywords(keywords);
doc.addMethodListener(frame);

editor.setDocument(doc);

frame.setSize(400,400);
frame.getContentPane().add(editor);
frame.show();

}
}

class TestFrame extends JFrame imple-
ments MethodListener{
public void methodAction(ActionEvent
e){
this.setTitle(e.getActionCommand()
);

}
}

Listing 4

SlangSoft
www.slangsoft.com

57OCTOBER 1999

Java COM

Insignia
www.insignia.com

WRITTEN BY
JASON WESTRA

The Business Advantage of EJB PART 1

E J B H O M E

Java COM

58 OCTOBER 1999

Competitive Advantage of Portability
Portability is a true concern in the

minds of many IT executives who see
the need to develop applications with
faster times-to-market and across more
platforms than ever before. The porta-
bility hype is fostered by the need to
bring new products to market at ever-
increasing rates – products that are as
easily compatible with legacy systems as
with Web-enabled systems. This mission
is heavily reliant on the interoperability
of software across a number of areas,
including platform/operating systems,
resources such as databases and trans-
action management services, and multi-
ple development languages/component
models – most recently, Enterprise Java-
Beans components.

Types of Portability
As previously mentioned, there are

different types of portability. Applica-
tions that are portable across these areas
can be quickly modified to meet
changes in your business or technology
and will be more easily maintainable
than nonportable, “stovepipe” applica-
tions. For instance, rather than making
upgrades to multiple versions of an
application for each specific platform,
one upgrade is made to one application.

Depending on the focus of your soft-
ware, you may worry about one or two
types of portability while shifting the
burden of the others to a middleware
provider. Let’s take a look at each type of
portability and understand which ones
will directly impact a Java/EJB developer.

Platform Portability
There’s a real need to have operating

system portability. The World Wide Web
had a profound impact on the need for
cross-platform (OS) software because
you couldn’t tell what platform an Inter-
net user was surfing on. Java combated
this problem by providing OS portability
via the Java Virtual Machine, which
translates operations into the correct OS
platform’s API. This common concept is
called wrappering.

Before I started a career in software
development, I thought a wrapper was
simply packaging for my chewing gum;
however, wrappers have revolutionized
more than the candy industry. They’re a
prime enabler for the interoperability of
heterogeneous components in the soft-
ware industry. Interoperability through
a wrapper or “adapter” design pattern is
achieved by providing an acceptable
interface that a client component
expects and can communicate with
effectively (see Design Patterns: Ele-
ments of Reusable Object-Oriented Soft-
ware by Gamma et al.). Thus an existing
component with an incompatible inter-
face may be called by other software via
a wrapper, achieving the reuse we’ve
come to expect in component-based
development. An example we should all
be familiar with: a JVM wraps multiple
operating systems in an acceptable
common interface, obviating the need
for developers to build multiple OS-spe-
cific versions of their software for each
platform.

The key point introduced here, and
one I’ll refer to often: the wrapper design
pattern is important to software porta-
bility (not just a convenient place to put
old chewing gum).

W
hat’s all this hype about portability? Portability has been a hot topic since Java’s arrival just a few
years ago, so I’m going to devote some space toward understanding portability issues centered
around the Enterprise JavaBeans architecture and development.This month I’ll discuss the various
types of portability and Java’s relationship to each; then I’ll touch on the portability goals of the EJB
specification and where EJB portability lacks maturity (and why not to worry). Next month I’ll pro-
vide tips on EJB portability as well as code examples depicting how you can help achieve the
promise of EJB portability through solid design and coding practices.

Developing portable EJB applications

FIGURE 1: EJB component execution environment

EJB
Component

EJB server's
default

EJB Container

Transaction Management
Security
Resource Pooling
Life Cycle Management

EJB Server

EJBHome
EJB

Component

EJBObject

Third Party's
EJB Container

Client

EJBHome

EJBObject

59OCTOBER 1999

Java COM

SL Corp
www.sl.com

Resource Portability
A flexible application is built with an awareness of resource portability.

Examples of resources might include transaction management services,
naming services, communication protocols or a database management
system. For instance, a commercial product built to access a storage
resource such as a database should remain as neutral as possible with
regard to its persistence mechanisms. Designing flexibility into this prod-
uct might include providing a layer of insulation between your business
objects and how they’re stored. This will allow your customers to decide
which database they wish to use with minimal impact to your product.
With so many types of storage mechanisms, including RDMSs, object-
relational databases, embedded databases and pure ODBMSs, you have to
take database portability seriously.

Java provides some degree of insulation against platform-specific
database code through its JDBC API. However, JDBC is flexible and pow-
erful enough to allow vendor-specific code to be written through its
database metadata features. You still have to use sound design patterns
and wrappering techniques to ensure minimal impact when changing
storage schemas. As we’ll see, EJB specification 1.0 provides further guid-
ance on resource portability.

Language/Component Model Portability
Language portability is the ability to support multiple development

languages. This form of portability is provided to the development
community through two widely regarded standards: Common Object
Request Broker Architecture and Component Object Model. CORBA
and COM allow components coded in multiple languages to commu-
nicate with each other through an interface definition language. IDL
provides mappings between disparate languages such as C, C++, Java,
Visual Basic (VB) and even COBOL. These unique languages are
wrapped (once again, that valuable wrapper pattern) in recognizable,
acceptable interfaces that foster reuse not only of business logic but
also of human resources by way of current IT staff. For instance, lan-
guage portability means you can use an existing COBOL or VB pro-

grammer to code a piece of functionality for your application that can
be wrapped to look like a CORBA component. As you can see, portabil-
ity allows quicker time-to-market for your products through the reuse
of existing assets, even human assets.

Java provides platform portability, but you’re tied to one language,
Java. While CORBA and COM alleviate this single-language portability
issue, they’re still quite different from one another. CORBA objects may
be deployed on any platform, while COM components are currently
tied to the Windows operating system. Thus CORBA and COM have
potentially different markets. While CORBA fits well in heterogeneous
environments, COM is ideal for pure Microsoft shops. The EJB specifi-
cation seriously addresses component model interoperability with
CORBA; however, it leaves COM integration up to the EJB server ven-
dor’s imagination.

Enterprise JavaBeans Portability
One of the primary goals of Enterprise JavaBeans is to provide a com-

ponent model for building portable server-side components that
addresses Java’s lack of language portability and more. For the remainder
of this article I’ll focus on how the EJB specification lays the groundwork
for Java’s portable, server-side component model.

Portability Goals in the EJB Specification
“Enterprise JavaBeans will make it easy to write applications: applica-

tion developers will not have to understand low-level transaction and
state management details; multi-threading; resource pooling; and other
complex low-level APIs….” —EJB specification 1.0, section 2.1: Overall
Goals

Though not stated explicitly, the net result of this goal is the promise of
interoperability between third-party EJB vendor products. This goal implic-
itly introduces the notion of a component execution environment, the cen-
tral ingredient in providing EJB portability. In my first “EJB Home” column I
described this concept briefly, but I’ll review it again as a refresher.

A component execution environment typically consists of an EJB
server and one or more EJB containers (see Figure 1). While JavaBean
client components typically run within a visual container, EJBs execute
within server-side containers. The container shelters your EJB compo-
nent from its runtime platform by managing all of its interactions with
the operating system. Together, an EJB server and its containers provide
your components with access to distributed runtime services such as
state management, distributed transaction management, multithread-
ing and resource pooling, as stated above.

The Enterprise JavaBeans specification provides guidelines to
encourage EJB server and container providers to build their products in
a portable manner (see section 17 of specification). Figure 1 shows how
an EJB server is making use of a third-party EJB container. Because the
third-party container was built according to the EJB specification, it’s
portable to any EJB server and runs seamlessly within this component
execution environment. EJB’s component execution model is a prime
example of how portability cuts time-to-market for products. An EJB
server provider lacking skills in certain areas, such as object databases,
could license a third-party EJB container that maps entity beans to an
object database and viola! – it’s in the EJB server business!

“Enterprise JavaBeans applications will follow the ‘write-once, run any-
where’ philosophy of the Java programming language. An enterprise bean
can be developed once, and then deployed on multiple platforms without
recompilation or source code modification.” —EJB specification 1.0, sec-
tion 2.1: Overall Goals

This EJB portability goal is easy! It simply reiterates Java’s approach
to providing OS portability from the standpoint of EJB. The very nature
of EJB means it should run on any Java-compatible platform via the
JVM. The benefit of “write-once, run anywhere” on the server is the
ability to easily scale your application from a lowly workstation to a
high-end enterprise server as volume demands. Compare that to the
time it would take to rewrite a nonportable application from one serv-
er platform to another! By the time you finished, your dissatisfied cus-

Career
Central

www.careercentral.com/java

Java COM

60 OCTOBER 1999

61OCTOBER 1999

Java COM

IAM
www.iamx.com

tomers would have given their business
to a company that could meet their
business needs sooner.

“The Enterprise JavaBeans architecture
will define the contracts that enable tools
from multiple vendors to develop and
deploy components that can interoperate
at runtime.” —EJB specification 1.0, sec-
tion 2.1: Overall Goals

EJB specification 1.0 defines two types
of contracts: between enterprise beans
and their client and between enterprise
beans and their containers. The enter-
prise bean-client contract ensures that
the enterprise bean provider (e.g., enter-
prise bean developer) and container
provider must collaborate to offer
unique object identity, method invoca-
tion capabilities and an EJB home (e.g.,
factory interface and class). In a perfect
world upholding this contract provides
client-side portability with respect to
various EJB server vendors.

A second component contract is
defined between the enterprise bean and
its container. By upholding this contract,
an enterprise bean will be deployable
within multiple vendors’ tools, and will
be able to use the runtime services of any
vendor’s EJB server. This lists a number of
services, such as lifecycle management,
that the container must offer an enter-
prise bean, as well as the interfaces that
allow the container to manage the bean
in a component execution environment.

“The Enterprise JavaBeans architecture
will provide interoperability between
enterprise Beans and non-Java program-
ming language applications. The Enter-
prise JavaBeans architecture will be com-
patible with CORBA.” —EJB specifica-
tion 1.0, section 2.1: Overall Goals

Portability across multiple languages is
important in developing software applica-
tions. The creators of the EJB specification,

understanding the importance of porta-
bility, defined the Enterprise JavaBeans
component model to allow for the inter-
operability with other component models
such as COM/DCOM (Distributed COM)
and CORBA. A separate specification
describes the mapping of EJB to CORBA. It
is available for download at www.java-
soft.com/products/ejb/docs.html.

The implementation of component
model portability in EJB is vendor specific.
An example implementation might have a
COM or CORBA component “wrapped” in
an EJB container, providing a client with
EJB interfaces just like a normal enterprise
bean (see Figure 2). You can see the busi-
ness advantage of EJB’s component model
portability – existing and new business
logic written in other component models
will be reusable from your EJB application.

EJB Portability: Myth or Reality?
While the EJB specification 1.0/1 has

laid the foundation for building portable
enterprise beans, there is much left to be
specified before true interoperability will
be a reality. The EJB specification is vague
in a number of areas important to EJB
portability, including a container
provider’s responsibilities, multiple-ven-
dor EJB server integration, CORBA and EJB
security models, distributed/asynchro-
nous event notification and mappings for
COM integration. Without addressing
these areas in future drafts of the EJB spec-
ification, EJB portability will be compro-
mised. Am I worried? No. Fortunately, Java-
Soft and a contingent of EJB proponents
are working on these issues as I write.

Summary
Portability offers tremendous business

advantages by enabling quicker time-to-
market for new products that don’t need to
be rewritten for each platform in question.
Portability also reduces maintenance costs
of your applications and promotes reuse
across disparate technologies, allowing you
to use existing hardware, business logic and
even software development talent.

Enterprise JavaBeans will soon be
trusted to help build portable, server-
side components and applications, pro-
viding the business advantage IT man-
agers seek. The EJB specification
addresses key issues around the integra-
tion of disparate component models
and portability between multiple EJB
vendors, providing early EJB adopters
with a competitive advantage in the
marketplace. Furthermore, EJB vendors
are offering increasingly powerful tools
to build EJB applications.

However, even though the recently
released EJB specification 1.1 addressed
issues around entity bean compatibility
(i.e., entity beans are now mandatory),
there is still much to be fulfilled concern-
ing EJB’s portability promise. It is lacking
in critical areas, including security, sys-
tem management and EJB server com-
patibility. While the specification defines
the need for compatibility on numerous
fronts, it doesn’t qualify the means to this
end. As vendors pump out new EJB prod-
ucts, how can you be sure of the portabil-
ity promised by the specification?

In Part 2 I’ll cover tricks, traps and
techniques in designing and coding
portable Enterprise JavaBeans. Expand-
ing on what you’ve learned in this arti-
cle, the code examples in Part 2 will give
you an understanding of how to apply
the wrapper design pattern to your
development repetoire to ensure EJB
portability. Until next time....

E J B H O M E

AUTHOR BIO
Jason Westra is a

managing partner with
Verge Technologies Group,
Inc., a Java consulting firm
specializing in Enterprise

JavaBeans solutions. jwestra@uswestmail.net

Java COM

62 OCTOBER 1999

FIGURE 2: COM component wrapped as an EJB

EJB Container

EJB Server

Client

EJBHome

EJBObject

COM
ComponentEnterprise

Bean

In Part 2 I’ll cover

tricks, traps and

techniques in

designing and

coding portable

Enterprise

JavaBeans

‘‘

’’

63OCTOBER 1999

Java COM

9Net
www.9netave.net

Broadcast live from San Francisco at JavaOne

S Y S - C O N R A D I O

SYS-CON RADIO INTERVIEWS WITH...
GRANT WOOD & DANIEL BERG,

AND MARTIN HARDEE

Java COM

64 OCTOBER 1999

Q:
A:

Q:
A:

Q:
A:

Q:

A:

A:

A:

JDJ: Joining me from Cyrus Intersoft
is Grant Wood, an engineer, and
Daniel Berg, the chief technology
officer. What is your involvement in
the Java industry?
Berg: We’re a software start-up based in
Minneapolis, Minnesota; we have an Inter-
net application platform that allows any
Java-based software application and applet
to be distributed anywhere. It’s anytime,
anywhere computing, utilizing the Internet
in new ways.

We’re delivering the capability to make
your digital presence (e.g., your prefer-
ences, file systems, the applications you
like to access most) meet up with your
physical presence at any given point, any
place on the Net. I could be at the airport
using a kiosk, a PDA or whatever, and
after making sure that whenever I go in
and establish authentication, all my appli-
cations are available there, including all
my file systems, security services and all
the stuff that go along with providing OS-
type services on the Internet.

JDJ: It seems like it’s a very broad
category of application servers.
Would you fall under that category?
Berg: I would say no because we don’t
offer the same things an application server
would offer as far as services to the appli-

cation. What we do is provide a transpar-
ent platform on which to deploy the appli-
cations. For example, if you were to take a
regular Java-based program, say a word
processor, most likely you developed
access to a file system (in order to read or
write a file); since it’s probably an applica-
tion, what we can do is run that applica-
tion. You click on an icon and it comes
into our environment; it’s a run-time envi-
ronment without installation. It almost
behaves like an applet – you can go to a
site or to our URL, and the application
starts execution.

Now when I go in there and do a file
dialogue or file open, I not only see local
file systems but also any remote file sys-
tems I’d have access to. We can dynamically
offer some of these services to applications.

We can take applications that have been
developed with multi-tiered environments
that have app servers and all the different
pieces of the equation, and they will still
work on top of our platform as long as
whatever you are deploying is Java.

JDJ: Who are some of the people
who are using your technology and
in what ways are they using it?
Berg: We’re initially going after ISPs and
service providers and giving them new
ways of deploying services. We’re also

going after Java developers and letting
them know that here is a new channel for
them to deploy their application. And it’s
really a “no brainer.” Grant could write an
application and run it on a platform allow-
ing a user to access that software from
anywhere, and he doesn’t have to change
anything in his application. There are no
APIs. It’s all transparent through the VM. It
offers developers new opportunities and
channels.
Wood: A developer could download
Speiros and log into a server somewhere
that would not only give him access to an
open source project that he may be work-
ing on or a project for work, but the tools
he uses to develop that could be handed
to him from the server as well. And those
tools could be updated and changed on a
daily basis.

What we have is a vehicle for doing
real time deployment of software as well.
As a developer, I could log into a server. I
would have my files and any shared files I
was working on. They could put it all on a
server, and now when people login,
maybe that’s how they check out their
software. They just click on the program,
write it, compile it and they’re done. You
don’t have to learn the way they check it
out. They could be using CVS, JC...whatev-
er they want. It’s really an excellent plat-
form for distributing, computing and
development. It takes a lot of the thought
out of the back end of it and allows you
to hand out tools or the tools of choice to
whoever is using the links.

JDJ: Two things I’ve always heard
from Java developers that are the
most important are the ease of use
and speed.
Wood: Well, can you click an icon?

JDJ: That’s all I really need to know.
Give us a little idea of that. Tell us
how it works.

Wood: You know how the Web is right
now; every site is different. How do you
find your way through a site? You have to
claw through it. Since we’re not doing
content anymore only applications, we’re
doing things much more familiar to users.
When someone turns on their cable box
and it logs into a Speiros server some-
where, it gives them a little menu with
icons for their applications. You didn’t
have to browse anywhere. You could
search and say I want to see word proces-
sors, and it might bring up 50 word
processors; you can click on them, get
information and bring up the Web page of
the guy who developed it. But all you do
to launch it is double-click on it. And that
could be coming from anywhere on the
Web.

All you need to know is point and click
– it’s that simple. Now you know how to
use that kiosk in the mall, that set-top
box, or your MAC, it really doesn’t matter.
We’re really delivering on the promise of
Java, “write once, run anywhere.” You
could do that before, but now you can
actually get to it anywhere. You could sit
down anyplace because now your appli-
cation is a full-blown application. It’s out
on the Net. Your files are something we
deliver as well. As you login, here’s your
home directory and maybe you’re con-
nected to 150 different servers out there,
and because your files and your applica-
tions are on the Internet, it doesn’t matter
where you are. You don’t have to install it
on your box or keep your files with you
when you leave your home machine.
Why would you even keep anything in a
local box when you can just keep them all
out on the Internet?
Berg: We have a developer’s release
available on our Web site,
CyrusIntersoft.com, and we’re looking for
developers to come download it and try it
out.

GRANT WOOD & DANIEL BERG
OF CYRUS INTERSOFT

65OCTOBER 1999

Java COM

Worldwide Internet
www.wipc.net

Q:

A:Q:
A:

Q:
A:

Q:
A:

Q:
A:JDJ: Joining me right now is Martin

Hardee, manager of the
java.sun.com Web site. Since we’re
at JavaOne, tell us a little bit about
the JavaOne Web site. What do you
think is its coolest part?
Hardee: The JavaOne Web site is actually
a subsite of java.sun.com –
java.sun.com/JavaOne. I think probably
the coolest thing our site does is we aspire
to get the community together. You see it
on the Java developer connection, and I
think we’ve seen it at JavaOne where we
have voting and things for the applica-
tions, but it is really the attendees that are
building things and putting them together.

JDJ: Let’s get to the Java Sun site. It
looks a little different.

Hardee: We redesigned the site slightly.
We thought about all sorts of radical
redesigns as you always want to do. We
do surveys continuously and look at all
the Web feedback. We probably get thou-
sands of comments a year. We did some
remote usability tests on the phone where
we’d call people in Australia or some
other country and ask them to look at
some mock-ups we had. We learned peo-
ple really like the look of the current site.
We pretty much stuck with something that
looks the same, but the technology has
grown so much.

Last year we did almost 250 different
discrete full technology releases on the
site, which is basically one every working
day. There’s an explosion of technology
and with the Java community process

there’s going to be even more. We
restructured things so you could find what
you needed, from discussion topics to
industry solutions and products. Based on
the responses we’ve gotten so far, I think
we hit the nail on the head. We’ll continue
to evolve it of course.

JDJ: Tell us about some of the feed-
back you’ve gotten and if it influ-
enced your redesign?
Hardee: We’ve actually done a lot of
these improvements incrementally. About
six months ago we did a survey on the
site; users said the technology has grown
tremendously so they couldn’t find any-
thing anymore. The first thing we did was
reorganize the products in the API’s page.
It was organized both by APIs and alpha-
betically. We also built an A-to-Z index of
the important items on the site, which has
been very popular. In the first week, it was
one of our top 20 URLs on the site. We
get about a million to two million page
views a day.

The hits range is up to 6–7 million
hits a day. We’ve also tried to marry
java.sun.com and the Java developer con-
nection subsite together for a more grace-
ful transition. And the JDC – a few months
ago you had to login for everything.
We’ve taken a lot of that off so there’s
more free and easy access. We’ve left on
login for the discussions and other things

where you have to be part of the commu-
nity and have to be known. But primarily
we’ve made access to the JDC easier to
find and easier to access once you get
there.

JDJ: What can we expect in the
future from the Web site?
Hardee: We did community source this
year and have really ramped up the Java
community process, which we’re trying to
make more of a Web-based activity. One
thing I’m interested in, our site’s been
around for a while and while we use a lot
of Java technology, including Java Web
Server, parts of the site are still running
Apache. We’re really interested in using
Java Server Pages. We’re doing a lot of
servlet work right now. Our commerce
system and the JDC are all servlet based,
so under the hood where you don’t really
see anything, we’re definitely having a lot
of fun playing with servlets and JSPs. If
you have any comments, go to the feed-
back links, and all your comments go into
a database. We read them, route them
and everything else.

JDJ: You actually read them?
Hardee: Somebody has the job of read-
ing them and figuring out where they go,
which is a tough job. We track all the
comments in the database and make sure
they get answered.

MARTIN HARDEE
OF JAVASUN

Java COM

66 OCTOBER 1999

Geek
Cruises
www.geekcruises.com

Founded in 1996,
Visualize, Inc. is the premier
data visualization provider
with over 20 years total of
Java Development expertise.

Our products offer:
• 2D & 3D Graphics
• User Interaction
• Analytical Capabilities
• Rapid Deployment

VantagePoint:
A class library for embedding
graphical functionality in a Java
application

DataVista Pro:
An applet designed to graphically
display data within a web page

For a free evaluation copy of
our software visit our web site
www.visualizeinc.com
or contact
JDJ@visualizeinc.com

1819 E. Morten, Suite 210
Phoenix, AZ 85020
602-861-0999

67OCTOBER 1999

Java COM

KL Group
www.klgroup.com/pagelayout

WRITTEN BY
JON SIEGEL

What’s Coming in CORBA 3?

C O R B A C O R N E R

T
he next release of the CORBA specification will be a major
one, CORBA 3.0. The last time the major release number
was incremented – to CORBA 2.0 – it signified the stan-
dardization of interoperability. What’s new and different
enough in this version for OMG to increment the major
release number this time?

Three major categories of specifications enhance
CORBA integration with Java and the Internet

Java COM

68 OCTOBER 1999

Despite its compact designation,
CORBA 3 isn’t a single specification –
instead, it’s the collection of specifica-
tions, adopted individually, that will be
added to the current CORBA 2.3 to form
the CORBA 3.0 release. Although we use
“CORBA 3” as shorthand to refer only to
the new parts, the official designation
CORBA 3.0 refers, formally, to the entire
CORBA specification book. With the post-
ing of final submissions for the CORBA
Component Model (CCM), Scripting and
the Persistent State Service (PSS) on the
OMG Web site in early August, all parts of
CORBA 3 are finally available. Votes on
these last few parts will be underway
when you read this, and are expected to
be completed by the end of 1999; check
OMG’s Web site for the latest word.

There are about 10 new specifications
in CORBA 3, and I’ll touch on all of them
here. Java programmers will be particu-
larly interested in the reverse Java-to-
IDL mapping and the CCM’s embracing
of Enterprise JavaBeans (EJBs), so I’ll put
some extra detail into these sections.

I’ll give you the URL for every specifi-
cation we discuss here. Documents
under consideration for all of OMG’s
works in progress are available to mem-
bers and nonmembers alike at
www.omg.org/schedule. Find the pro-
cess or future specification you’re inter-
ested in and click on it. This will bring
up a new page with URLs for all related
documents. For specifications, go to
www.omg.org and look down the left-
hand side of the page for “The OMA”; all
specifications are available under that
heading. You can download any of these
OMG documents, specifications, or
works in progress without charge.

Introduction to CORBA 3
The specifications included in the

designation CORBA 3 divide neatly into
three major categories that we’ll cover in
the following order:
• Java and Internet integration
• Quality of service control
• CORBA component architecture

Java and Internet Integration
The three specifications discussed

below enhance CORBA integration with
Java and the Internet.

Java-to-IDL Mapping
CORBA 3 adds a Java-to-IDL mapping

to the “normal” IDL-to-Java mapping
you’re familiar with if you’ve done any
Java/CORBA programming. To use it,
you start out by writing RMI objects in
what the specification refers to as the
“RMI/IDL subset of Java.” It’s a pretty
full subset; restrictions affect things
such as multipath inheritance of over-
loaded methods, name case collisions,
and private types in interfaces. (Java
allows private types in distributed inter-
faces. CORBA can’t seem to figure out
why anyone would want to keep a dis-
tributed variable private.) Objects must
extend java.rmi.Remote, and exceptions
must inherit from java.lang.Exception.
Obviously, CORBA objects passable by
value play a large role in the CORBA-
side implementation of this specifica-
tion.

Once you’ve written the objects, two
things happen: first, by compiling
through rmic with the proper options
set, your objects generate CORBA stubs
and use IIOP instead of RMI protocol.
Second, the RMI compiler will output

the IDL for your object into a file that
you can then compile in any program-
ming language, on any ORB, allowing
you (or your friends) to write CORBA
clients in any language, on any IIOP-
speaking ORB, that can invoke your Java
object.

This does a number of things. It
turns Java object programmers into
CORBA object programmers, and lets
Java objects play in CORBA’s multilan-
guage environment. (Unfortunately, it
doesn’t do anything for Java client pro-
grammers!) According to the first draft
of EJB 1.1, it’s a future requirement for
Enterprise JavaBeans interoperability
and will ensure that EJBs can play in
this multilanguage environment as
well.

It’s not a round-trip mapping, quite
intentionally. Since out and inout para-
meters don’t occur in Java, the reverse
mapping has no element that corre-
sponds to the Holder classes in the IDL-
to-Java mapping, and some IDL types
will never occur in the IDL output from
rmic. In some ways, though, the map-
ping is pretty clever: variables that
appear only in Java set-and-get opera-
tions will be mapped to an IDL
Attribute.

This specification is available from
the Web at www.omg.org/corba/clch-
pter.html#jilm.

Firewall Specification
The CORBA 3 firewall specification

defines transport-level firewalls, appli-
cation-level firewalls and (perhaps most
interesting) a bidirectional GIOP con-
nection useful for callbacks and event
notifications.

69OCTOBER 1999

Java COM

Palm Computing
www.palm.com

Java COM

70 OCTOBER 1999

Transport-level firewalls work at the
TCP level. By defining (courtesy of
IANA) well-known ports 683 for IIOP
and 684 for IIOP over SSL, the specifica-
tion allows administrators to configure
firewalls to cope with CORBA traffic over
the IIOP protocol. There is also a specifi-
cation for CORBA over SOCKS.

In CORBA, objects frequently need to
call back or notify the client that invoked
them; for this the objects act as clients and
the client-side module instantiates an
object that’s called back in a reverse-direc-
tion invocation. Because standard CORBA
connections carry invocations only one
way, a callback typically requires a second
TCP connection for this traffic heading in
the other direction – a no-no to virtually
every firewall in existence. Under the new
specification, an IIOP connection is
allowed to carry invocations in the reverse
direction under certain restrictive condi-
tions that don’t compromise the security at
either end of the connection. The firewall
specification comprises two documents:
www.omg.org/cgi-bin/doc?orbos/98-05-
04 and an erratum, www.omg.org/cgi-
bin/doc?orbos/98-07-04 .

Interoperable Naming Service
The CORBA object reference is a cor-

nerstone of the architecture. Because
the computer-readable IOR was (until
this service) the only way to reach an
instance and invoke it, there was no way
to reach a remote instance – even if you
knew its location and that it was up and
running – unless you could get access to
its object reference. The easiest way to
do that was to get a reference to its nam-
ing service, but what if you didn’t have a
reference even for that?

The interoperable naming service
defines one URL-format object refer-
ence, iioploc, that can be typed into a
program to reach defined services at a
remote location, including the naming
service. A second URL format, iiop-
name, actually invokes the remote nam-
ing service using the name that the user
appends to the URL, and retrieves the
IOR of the named object.

For example, an iioploc identifier, iio-
ploc://www.omg.org/NameService,
would resolve to the CORBA naming
service running on the machine whose
IP address corresponded to the domain
name www.omg.org (if we had a name
server running here at OMG). The URL
for the interoperable naming service
specification is www.omg.org/cgi-
bin/doc?orbos/98-10-11.

Quality of Service Control
Asynchronous Messaging and Quality
of Service Control

The new messaging specification

defines a number of asynchronous and
time-independent invocation modes
for CORBA, and allows both static and
dynamic invocations to use every
mode. Results of asynchronous invoca-
tions may be retrieved by polling or call-
back – the choice is made by the form
used by the client in the original invoca-
tion.

Policies allow control of quality of
service of invocations. Clients and
objects may control ordering (by time,
priority or deadline); set priority, dead-
lines and time-to-live; set start and end
times for time-sensitive invocations;
and control routing policy and network
routing hop count. The specification
also defines CORBA routers and store-
and-forward agents for IIOP invoca-
tions. Routers with the highest defined
quality of service will pass invocations
with a transaction-like handshake and
store invocations persistently, provid-
ing messaging-like network transmis-
sion. The routing specification defines
IDL interfaces to the marshaling
engine, an interesting piece of work in
itself.

The URL for the messaging specifica-
tion is www.omg.org/cgi-bin/doc?or-
bos/98-05-05.

Minimum, Fault-Tolerant and
Real-Time CORBA

Minimum CORBA is intended pri-
marily for embedded systems. Embed-
ded systems, once they are finalized
and burned into chips for production,
are fixed, and their interactions with the
outside network are predictable – they
have no need for the dynamic aspects of
CORBA, such as the DII or the IR that
supports it, which is why these features
are not included in minimum CORBA.
The URL for the minimum CORBA
specification is www.omg.org/cgi-
bin/doc?orbos/98-08-04.

Real-time CORBA standardizes re-
source control – threads, protocols, con-
nections and so on – using priority mod-
els to achieve predictable behavior for
both hard and statistical realtime envi-
ronments. Dynamic scheduling, not a
part of the current specification, is being
added via a separate RFP. The URL for
the real-time CORBA specification is
www.omg.org/cgi bin/doc?orbos/99-
02-12; an erratum is www.omg.org/cgi-
bin/doc?orbos/99-03-29.

Fault tolerance for CORBA is being
addressed by an RFP, also in process,
for a standard based on entity redun-
dancy and fault management control.
The URL for all information on this RFP
is www.omg.org/techprocess/meet-
ings/schedule/Fault_Tolerance_RFP.ht
ml.

CORBA Components Package
CORBA Objects Passable by Value

Termed valuetypes, objects passable
by value add a new dimension to the
CORBA architecture that previously
supported passing (and invocation)
only by reference. Like conventional
CORBA objects, these entities have
state and methods; unlike CORBA
objects, they don’t (typically) have
object references and are invoked in-
process as programming language
objects. It’s only when they’re included
in parameter lists of CORBA invoca-
tions that they show their talent by
packaging up their state in the sending
context, sending it over the wire to the
receiving context, creating a running
instance of the object there and popu-
lating it with the transmitted state. Fre-
quently used to represent nodes in
binary trees or cyclically linked lists,
valuetypes have been specified and
implemented to faithfully represent
these important constructs. This speci-
fication gives CORBA the capability of
the Java serializable, and is used exten-
sively in both the reverse mapping and
component model. The valuetype spec-
ification may be downloaded from
URLs www.omg.org/cgi-bin/doc?for-
mal/99-07-09 and www.omg.org/cgi-
bin/doc?formal/99-07-10. Many aspects
of valuetypes show only in the language
mappings; for these go to www.omg.
org/library/clangindx.html.

CORBA Components and CORBA
Scripting

The CCM takes the key services you
use most regularly – persistence, trans-
actions, security and notification – com-
bines them with the POA’s servant-han-
dling capability, and wraps all these
tools in higher-level interfaces corre-
sponding to the patterns that experi-
enced programmers use to code enter-
prise and Internet server applications.

This means that:
• CCM applications are very compact.

They use little code, and the little
that’s required is devoted almost
totally to business programming.

• Infrastructure functions – storing
data, activating and deactivating ser-
vants – are done automatically and
coded automatically as well.

• CCM implementations will be built
around an industrial-strength infra-
structure written by specialists and
tuned for optimum performance in
stressed environments, including the
enterprise and Internet. When this
infrastructure runs your CCM appli-
cation in its tuned environment, you
automatically get the benefits – high
throughput, great performance,

C O R B A C O R N E R

71OCTOBER 1999

Java COM

The Theory Center
www.theorycenter.com

Java COM

72 OCTOBER 1999

AUTHOR BIO
Jon Siegel, Object

Management Group’s
director of technology

transfer, presents tutorials,
seminars and company

briefings around the
world.The author of

CORBA 3 Fundamentals
and Programming, he

has extensive experience
in distributed computing,
object-oriented software

development and
geophysical computing.

Jon holds a Ph.D. in
theoretical physical

chemistry from Boston
University.

robustness – even though you don’t
have to write any infrastructure code,
or even code to POA and CORBA ser-
vices interfaces.

The four major parts of the CCM are:
• A model that presents common func-

tionality – transactions, security,
event handling, persistence – to the
programmer at a high level using
declarative languages and, optionally,
visual tools

• A container environment that pack-
ages (at the basic conformance level)
transactions and security, adding (at
the extended conformance level) per-
sistence and event handling

• A software distribution format that
enables a CORBA component soft-
ware marketplace

• Integration with Enterprise JavaBeans

Component model functions are
packaged and presented to program-
mers at a higher level of abstraction than
are the bare CORBA services. Compo-
nent interfaces are declared using newly
standardized additions to OMG IDL.
Components declare their persistent
state using Persistent State Definition
Language (PSDL, a superset of OMG
IDL), defined in the new PSS (a new
CORBA service not presented here). Pro-
grammers then use Component Imple-
mentation Definition Language (CIDL,
an extension of PSDL) to declare some
of the component’s behavior; CCM
products use these declarations to gen-
erate code for parts of the implementa-
tion. Finally, an XML-based configura-
tion language ties components together
in assemblies and configures them for
individual installations. Because these
new languages work at higher levels of
abstraction than CORBA and the CORBA
services, business programmers can
write enterprise- and Internet-level
applications with less help (perhaps no
help!) from infrastructure experts. In
addition, some of the languages were
designed to be generated by visual tools.

One objective of CCM is to allow you to
write distributed applications that mix
CORBA components running in CORBA
component servers with EJBs running in
EJB-technology-based servers. This
allows programmers to create an applica-
tion by reusing existing components of
either kind. To accommodate EJBs the
CCM defines two levels of containers and
conformance: the basic level container is
transactional and secure, and provides
simple persistence; its definition corre-
sponds, almost feature for feature, to EJB
1.1. To this the extended-level container
adds container-managed (and -imple-
mented) persistence for multiple seg-

ments, event handling, multiple inter-
faces and navigation. The specification
covers all of the various ways that CORBA
clients can interact with EJBs and how
Java clients can interact with CORBA
components. We’ll go over details of these
CCM/EJB interactions in a future col-
umn. Since every container presents its
services to components through the
same set of standardized interfaces, com-
ponent applications are portable from
any vendor’s container to another’s. A
basic-level container packages up sub-
sets of the CORBA Transaction Service,
CORBA security, and simple persistence
in a new set of interfaces. At level 2 the
container adds more of the PSS and a
subset of notification service. It’s not nec-
essary for a container implementation to
furnish its own persistence service; the

specification assumes that CCM prod-
ucts will use any standard PSS and that
your site administrator will buy and
install one. Of course, vendors are free to
package PSS and CCM together if they
want. Level 1 containers must include
Transaction and Security support, how-
ever, and level 2 containers have to add
their own event handling capability.

Extended CORBA components sup-
port multiple interfaces. The CCM
defines interfaces, provided by the con-
tainer, that allow a component-aware
client application to navigate among
them. To component-unaware clients –
including all clients written in a CORBA
2 environment – each interface appears
to be an individual CORBA object; these
clients can’t take advantage of the
implementation’s component nature
but can invoke it as a normal CORBA
object without any trouble.

To help build a market in components,
the CCM defines a software distribution
format with several notable features. The
distribution format contains executables
for all of the platforms a vendor wants to
support, in a type of zip file. Installer
code, built into the container, extracts
and installs the proper executable for the
platform it’s going to run on. Following
installation, component executables can
be configured. This overcomes another
resistance point – that it’s rare to find two
installations that need exactly the same
piece of functionality. By building and
selling flexible modules to wider markets,
vendors can attain the volumes they
need and the component market will
build to critical mass.

Configuration files contain informa-
tion on events emitted and consumed
by components, at least at the extended
level. Containers construct channels for
the events and transmit them at run-
time. Since CCM applications typically
consist of several component types, the
container will also have to connect up
an invocation by one type to an inter-
face on another; this also is specified in
the configuration file and install-time
configuration process. By the way, con-
figuration files use XML format.

There’s also a scripting language spec-
ification that will map various scripting
languages to the CCM. This will add
another way to assemble components
into applications, in addition to the
XML-based assembly tools described in
the CCM. We’ll devote a column to this
sometime in the future too.

The CCM and scripting specifications
hadn’t completed their final votes when
this column was written, but may be a
done deal by the time you read it. Check
out www.omg.org/techprocess/meet-
ings/schedule/CORBA_Component_M
odel_RFP.html and www.omg.org/tech-
process/meetings/schedule/CORBA_Sc
ripting_Language_RFP.html for details,
and to download your own copy of the
700-page CCM document.

Summing Up…
CORBA does as much as it can to sup-

port every programming language and
platform. Because Java’s object model
aligns closely with CORBA’s, and Java’s
Virtual Machine is platform-portable,
CORBA is able to do more with it than
with other languages, and this shows in
the specifications we’ve reviewed in this
month’s column. We think this bodes
well for productivity and popularity on
both the CORBA and Java sides of the
aisle, and I may muse more about it in a
future column.

siegel@omg.org

CORBA does as

much as it can to

support every

programming

language and

platform

‘‘

’’

C O R B A C O R N E R

73OCTOBER 1999

Java COM

Protoview
www.protoview.com

Mindbridge.com
Introduces IntraSmart
(Fort Washington, PA) –
Mindbridge.com has
released IntraSmart, a
comprehensive, ready-
to-go intranet that
includes powerful busi-
ness applications and
the software components neces-
sary to deploy an enterprise-
level intranet. IntraSmart’s busi-
ness applications include Docu-
ment Sharing/Management,
Group Calendar/Scheduler,
Group Address Book/Company
Rolodex and Employee Directo-
ry. www.intrasmart.com

HOB Offers HOBLink
J-Term 2.2
(Dallas, TX) – Web-to-host con-
nectivity is available using
HOBLink J-Term version 2.2, a
Java-based terminal emulation
software that offers 3270, 5250
and VT525 connectivity among
mainframe, midrange, UNIX and
personal
computers.
HOBLink
J-Term pro-
vides secure,
multiplatform, remote data
access to mainframe, AS/400,
UNIX and DEC computers via
the Internet, intranets or
extranets. www.hob.de

PalmSource ’99
Conference
(Santa Clara, CA) –
Palm Comput-
ing, Inc., will
host its third
annual
PalmSource
conference
for the Palm
Computing plat-
form on October 19–22,
1999, at the Santa Clara Conven-
tion Center. The conference will
provide attendees with platform
technology presentations,
industry perspectives and prod-
uct showcases. Sponsors include
Aether, AvantGo, BellSouth,
Handspring, IBM, JP Systems,
Motorola, QUALCOMM, Sun
Microsystems and Symbol Tech-
nologies. Participants can regis-
ter online, via fax or by mail.
www.palmsource.com

ObjectSwitch Offers
EJB Interface
(San Francisco, CA) –
ObjectSwitch Corporation
announced its new EJB interface
for ObjectSwitch 3. The
ObjectSwitch
J-Adapter allows
CLECs, Wireless
Carriers and
alternative net-
work providers to create intelli-
gent mediation and provisioning
applications using EJB servers
from multiple vendors, and to
combine the resulting applica-
tions into a single seamless ser-
vice offering.
www.objectswitch.com

JavaCC Now Supported by
Metamata
(Fremont, CA) –
Java Compiler
Compiler (JavaCC), a parser
generator for use with Java
applications, is now being dis-

tributed and supported by
Metamata. In addition to the
parser generator, JavaCC
provides other standard
capabilities related to parser

generation such as tree
building, actions, debugging,

etc. www.metamata.com

ServletExec 2.1 and
ServletExec Debugger 2.1
(Alpharetta, GA) – New Atlanta
Communications, LLC,
announces Servlet Exec 2.1, a
free upgrade to its servlet and
JSP engine, and the ServletExec
debugger
2.1, a free
tool for
developing and debugging
servlets within popular Java
IDEs. www.newatlanta.com

Jeode Platform
Shines in
Performance
Testing

(Fremont, CA) – Insignia Solutions
announced that its Jeode Embed-
ded Virtual Machine (EVM) tested
faster than other virtual machines
evaluated in performance bench-
marks conducted by Pepsan Inc.,
a third-party organization.
www.insignia.com

JDJ Editor Gives Keynote
Speech at Hi-Tech Job Fair
(Meadowlands,
NJ)– Sean Rhody,
editor-in-chief of
Java Developer’s
Journal, was the
keynote speaker

at the
career event at Giants Sta-
dium on September 15,

1999. JDJ was the exclusive
media sponsor for this confer-
ence.

Earlier this year JDJ
announced their Java career
opportunities services.
http://www.sys-con.com/
java/jobs/javajobs.cfm

Cerebellum Launches 1.3
(Pittsburgh, PA) – Cerebellum
Software, Inc., released its next
upgrade, which enables a wider
variety of applications to easily
access, integrate and update
data located in an increased
number of data source types.
The new version also provides
greater flexibility in the types of
applications that can use Cere-
bellum’s application program-
ming interface. www.cerebel-
lumsoft.com

Java Developer’s Journal
Launches JDJ Consulting
Services Division
(Pearl River, NY) – In September
1999, Java Developer’s Journal
announced its new consulting
services division, which will pro-
vide high-end, enterprise-wide
Java technology solutions to mid-
sized and Fortune 500 corpora-
tions. As the world’s leading Java
resource, JDJ has been providing
cutting-edge Java solutions for
over four years and is poised to
use its pool of expert Java devel-
opers to undertake mission-criti-
cal Java projects. www. JavaDevel-
opersJournal.com

(San Mateo, CA)
– PointBase,
Inc., and Psion
Computers
announced suc-
cess running
PointBase
Mobile Edition on a Psion
Series 5mx handheld computer
– the first time a SQL database

written in 100% Pure Java
has run on a handheld
device of any type. The
Psion-ready PointBase
Mobile Edition is available

now with full
developer
support.

www.pointbase.com and
www.psionusa.com

Introducing the First SQL DB Written
in Java that Runs on Handheld

(Burlington, MA) –
SilverStream Software,
Inc., has launched a
worldwide educational
seminar series designed
to educate Java applica-
tion developers and
architects on J2EE. Beginning
in October, the free half-day
“J2EE for the Real World” ses-
sions will include software,

educational
materials, techni-
cal demonstra-
tions and instruc-
tion from indus-
try experts. For
seminar informa-

tion and registration go to
www.silverstream.com/web-
site/SilverStream/Pages/event
s_f.html.

SilverStream Announces J2EE
Seminars

Java COM

74 OCTOBER 1999

Your Key to Java Experts

75OCTOBER 1999

Java COM

InetSoft
www.inetsoftcorp.com

Pervasive Software has released version 7.5
of its ubiquitous database engine and software
development kit. I got the chance to take a
look at the database and the various tools
using an evaluation copy of the software for
Windows NT 4.0.

Installation and Configuration
I installed the software from the Perva-

siveSQL 2000 SDK CD-ROM. Pervasive
automatically searches for the presence of
a working copy of their workgroup data-
base engine when you install the SDK kit.
If you don’t have a running copy of Perva-
siveSQL, the SDK will install the database
server kit first. The install routine for the
database server gives you the choice of
accepting a typical installation or select-
ing a custom install option. Selecting the
custom install for the database server
appears to make no difference; the
installation program seemed to go
ahead and install all the options anyway.
All in all the installation went smoothly.
After the installation completes, the
server runs a small test to ensure that
everything was installed properly.

Once the database is running, the SDK
kit can be installed. Selecting the custom
option for the SDK gives you a number of
choices. PervasiveSQL 2000 provides a
comprehensive set of tools for interfac-
ing with the database, such as plug-ins
for Inprise, Microsoft Visual Studio and
Java. The database server is available for
Windows NT and Novell NetWare, and
Pervasive has announced versions for
Solaris and Linux. Pervasive even makes
a version of the engine available for vari-
ous smart-card environments.

Architecture
The database server uses a small foot-

print and starts up easily and quickly as
an NT service. The underlying tech-
nique that serves as the foundation for
PervasiveSQL 2000 is an engine that Per-
vasive calls the MicroKernel Database
Engine (MKDE). The MKDE provides a
core layer for all low-level processing,
such as index management, caching,
transaction control and lock manage-
ment. The PervasiveSQL engine is built
on top of the MKDE with a transaction
layer based on Pervasive’s Btrieve archi-
tecture, and a relational layer based com-
pletely on ODBC. Pervasive’s SQL interface
is abstracted from the MicroKernel by a
layer that’s called the SQL Relational Data-
base Engine (SRDE) (see Figure 1).

Part of Pervasive’s differentiation from the
other database players in the marketplace is
their support of relational and transactional
interfaces based on their Btrieve layer. Perva-

sive’s relational interface fully supports the
ODBC standard (and by extension JDBC), and

programming against the MKDE using ODBC

is easy and quick. Pervasive has essentially
built its relational database-access layer
around the ODBC standard, making it a
straightforward process for embedded devel-
opers to work with the relational layer.
Although you’re free to develop all your appli-
cations using the relational layer, the folks at
Pervasive make no bones about the fact that
one of its advantages is the ability to use the
transactional interfaces to access the database
at a much lower level. On their Web site, Perva-
sive provides a detailed description of their
product in a paper called “Pervasive Products
and Services,” where they describe what they
believe to be some of the major benefits of the
transactional interface, e.g., speed, data
integrity and scalability. Although the original
Btrieve API is over 15 years old, it continues to
evolve. Thus it supports modern RDBMS con-
cepts such as transaction support and on-line
backup, which are more commonly identified
with relational database engines. A single “log-
ical” database can be accessed by the lower-
level transactional APIs as well as by ODBC and
SQL. The Pervasive Control Center provides
you with tools to add the necessary data dictio-
nary information to a set of Btrieve files that
form a logical database. If you wish to access
the database using the transaction interface,
they provide a suite of ActiveX controls for this
purpose, as well as interfaces for Visual Basic,
Delphi and C++. PervasiveSQL also provides an
interface from Java that’s based on JDBC, but
they’ve added some extensions to account for
the fact that JDBC is based upon SQL, which
isn’t a requirement for the Btrieve API layer.
This allows a Java program to access the Btrieve
API directly, without relying on column infor-
mation stored in the relational layer. Current
Btrieve programmers will find that the Java
interface hides many of the implementation
details when compared with the older non-Java
API.

SQL 2000 v7.5
by Pervasive Software

jmilbery@kuromaku.com

AUTHOR BIO
Jim Milbery is a software consultant with Kuromaku Partners

LLC. He has over 15 years of experience in application
development and relational databases. Jim can be reached
at jmilbery@kuromaku.com, or via the company Web site

at www.kuromaku.com.

REVIEWED BY JIM MILBERY

SQL 2000 v7.5: Pervasive Software
Web: www.pervasive.com

Phone: 800.287.4383

Test Environment:
Client/Server: Gateway Solo 366, 256MB RAM,

10 Gigabyte disk drive,
Windows NT 4.0 (Service Pack 4)

Pricing: $149.00

Requiremnts:
Intel 486,Windows NT 4, 95 or 98,

29 MB hard Disk
6 MB RAM

Java COM

76 OCTOBER 1999

Driver

Session

Database

SCursor

XCursor

SCursor

XCursor

XCursor

TableMetaData

IndexMetaData BufferMetaData

BufferMetaData

BufferMetaData

BufferMetaData

Table

RowSet

PsqlException

Producer

Produced

Class

Derived

Base

KEY

FIGURE 2 Pervasive Java API

FIGURE 1 Pervasive MicroKernel Architecture

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

Core Engine Function
*Physical Data Access *Transaction Processing
*Caching *Data Integrity Enforcement *Concurrency

77OCTOBER 1999

Java COM

Java Buyers Guide
www.javabuyersguide.com

Java COM

78 OCTOBER 1999

Pervasive SQL and Java
I found the Java interface reasonably easy to

use. Pervasive provides documentation for
working with their sample applications in
either Inprise’s JBuilder or Symantec’s Visual
Cafe. However, I was able to work with the sam-
ple projects using my copy of Oracle JDevelop-
er. Pervasive makes use of the factory concept
for their Java API, as shown in Figure 2.

There are class objects for the major tasks
you’ll need to undertake in order to work with
your PervasiveSQL database and Java. What
makes Pervasive different from working direct-
ly with JDBC is you can also access the data
using the transactional API. If you have a logi-
cal database that includes a relational data dic-
tionary layer, you can use the DATABASE class
to work with the metadata, as in a classical
relational design. However, you’re not required
to use this interface in order to access the
Btrieve layer. The Java API will allow you to
work directly with data files in a loosely cou-
pled database. The standard installation of Per-
vasive includes a number of sample databases
and programs for you to work with. As usual, I
bypassed the samples and went directly to cre-
ating my own database using the Pervasive
Control Center, as shown in Figure 3.

The control center provides a one-stop-shop
for accessing all the major tools and interfaces
for creating and managing Pervasive databas-
es. There are lots of hidden gems within the
various tools that are shown in the outline con-
trol on the left-hand panel of the control cen-

ter. I was easily able to create a new database
with a relational layer using the ODBC inter-
face from the control center. I modified a few
existing table-and-load scripts and used them
with the SQL Query window to create a new
table and populate it with data. The control
center provides a classic text display as well as
a grid display for records, as shown in the panel
on the right-hand side of Figure 3. Pervasive
provides plenty of tools and utilities for work-
ing with the server engine as well as the data-
bases managed by the server. Pervasive’s API
supposedly allows you to control and tune your
databases as well as access records, and I sus-
pect that the development team made use of
this API when constructing the various utilities
that are called by the control center. There are
an abundance of tools, but the user interface

between them is somewhat inconsistent. Many
of the utilities provide for making detailed
modifications at the lowest levels of the data-
base, and the utility interface expects you to
know what you’re doing. For example, the
Maintenance utility gave me low-level access
to the UGRADS file that I created inside my
new database. However, the utility assumed
that I knew what I wanted to do to the file, and
there were no wizards to guide me through the
modification process.

Once my database was created, it was a rela-
tively simple process to use the Java API to
access my UGRADS table through a Java pro-
gram (although I’ll admit that I stuck to using
the relational layer with the DATABASE class).

Summary
The Pervasive Software Web site offers an

Aberdeen research paper that compares the
total cost of ownership of PervasiveSQL to
other database engines on the marketplace.
Given the fact that you can control the entire
database and server through the API interface,
I believe you can build an application and
database that’s easy to maintain and manage. If
you plan on embedding a database inside an
application and are willing to control the data-
base in this manner, Pervasive offers a com-
pelling product. Pervasive will appeal to the
developer who wants to exert a fine degree of
control over the data while still allowing end
users to access the underlying data using
friendly SQL interfaces over ODBC.

FIGURE 3 Pervasive Control Center

Cyscape
www.cyscape.com

Java COM Java COM

The World’s Leading Java Resource

Carmen
Gonzalez
Vice President,
JDJ Advertising
Sales

JDJ Java Report Java World JavaPro

PUBLICATIONS REGULARLY READ BY JAVA PROFESSIONALS

In
de

pe
nd

en
t R

ea
de

x
Re

ad
er

 S
ur

ve
y

re
su

lts

18%

39%

3%

84%

Only Java Developer’s Journal Readers are
100% Pure Java

Before you
advertise in a
publication, please
ask how many
real Java readers
you’re actually
reaching!

www.JavaDevelopersJournal.com or call 914-735-0300
©1999 SYS-CON Publications, Inc. All rights reserved.
JDJ and Java Developer’s Journal are registered trademarks of SYS-CON Publications, Inc.
All other names are trademarks of their respective owners.

Your ad in Java Developer’s Journal reaches only 100% Java
professionals who make the decisions to purchase Java related
products and services, not Visual Basic programmers who never

requested the publication you advertise in!

We build our circulation one subscriber at a time.

That’s one of our secrets why your ad works in JDJ.

Get Your Own
Subscription to the

Finest Technical Journals
in the Industry!

1-800-513-7111
www.sys-con.com

SYS-CON
PUBLICATIONS

Sigs Java C
www.javad

81OCTOBER 1999

Java COM

Conference
evcon.com

Java COM

www.javadevelopersjournal.com

jdjconsulting@sys-con.com

Your Key to Java Experts

W
h
e
r
e
i
n
th
e
wo
rl

d
ca
n
you

find
the most qualified

Java
expe

r
t
s
f
o
r
y
o
u
r
e
n
terprise

Java
technology

sol
u
t
i
o
n
s
?

83OCTOBER 1999

Java COM

ADVERTISER URL PH PG

9NETAVENUE, INC. WWW.9NETAVE.NET 888.9NETAVE 63

AMERICAN CYBERNETICS WWW.SOFTEXPORT.COM 800.899.0100 55

AVANTSOFT, INC. WWW.AVANTSOFT.COM 408.530.5705 83

BEA WEBLOGIC WWW.WEBLOGIC.BEASYS.COM 800.817.4BEA 2

BLUE SKY SOFTWARE WWW.BLUE-SKY.COM 800.559.4423 23

CAREER CENTRAL WWW.CAREERCENTRAL.COM/JAVA 888.946.3822 60

CAREER OPPORTUNITY ADVERTISERS 800.846.7591 85-93

CEREBELLUM SOFTWARE WWW.CEREBELLUMSOFT.COM 888.862.9898 37

COMPUWARE NUMEGA WWW.COMPUWARE.CON/NUBEGA 800.4.NUMEGA 6

CYSCAPE WWW.CYSCAPE.COM/FREE4J 800.932.6869 78

DEVELOPMENTOR WWW.DEVELOP.COM 800.699.1932 83

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/ 65 532.4300 51

ENTERPRISESOFT WWW.ENTERPRISESOFT.COM 510.742.6700 11

FIORANO SOFTWARE, INC. WWW.FIORANO.COM 408.354.3210 33

FORCE 5 SOFTWARE, INC. WWW.FORCE5.COM 408.735.0665 53

GEEK CRUISES WWW.GEEKCRUISES.COM 67

IAM CONSULTING WWW.IAMX.COM 212.580.2700 61

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732.235.0137 75

INSIGNIA SOLUTIONS, INC. WWW.INSIGNIA.COM 800.848.7677 57

INSTANTIATIONS INC. WWW.INSTANTIATIONS.COM 800.808.3737 26

JAVA BUYER’S GUIDE WWW.JAVABUYERSGUIDE.COM 914.735.0300 77

JDJ CONSULTING SERVICES WWW.JAVADEVELOPERSJOURNAL.COM 800.713.5111 84

JAVA DEVELOPER’S JOURNAL WWW.JAVADEVELOPERSJOURNAL.COM 914.735.0300 79

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 42-43

KL GROUP INC. WWW.KLGROUP.COM/PAGELAYOUT 888.328.9599 67

KL GROUP INC. WWW.KLGROUP.COM/SWINGSUITE 888.328.9596 21

KL GROUP INC. WWW.KLGROUP.COM/COLLECT 888.3289597 96

METAMATA, INC. WWW.METAMATA.COM 510.796.0915 45

NEW ATLANTA WWW.NEWATLANTA.COM/ 678.366.3211 29

OBJECT DESIGN WWW.OBJECTDESIGN.COM/JAVLIN 800.962.9620 48-49

OBJECT INTERNATIONAL SOFTWARE WWW.OI.COM 919.772.9350 39

OBJECTSWITCH CORPORATION WWW.OBJECTSWITCH.COM 415.925.3460 35

PALM COMPUTING, INC. WWW.PALM.COM 69

POINTBASE WWW.POINTBASE.COM/DEVLIC/JDJ 877.238.8798 27

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 3

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 73

QUICKSTREAM SOFTWARE WWW.QUICKSTREAM.COM 888.769.9898 30

RIVERTON SOFTWARE CORPORATION WWW.RIVERTON.COM 781.229.0070 47

SD 99 EAST WWW.SDEXPO.COM 800.441.8826 82

SEGUE SOFTWARE WWW.SEGUE.COM 800.287.1329 17

SIGS CONFERENCE FOR JAVA DEVELOPMENT WWW.JAVADEVCON.COM 212.242.7515 80-81

SILVERSTREAM SOFTWARE, INC. WWW.SILVERSTREAM.COM 888.823.9700 95

SL CORPORATION WWW.SL.COM 415.927.1724 59

SLANGSOFT WWW.SLANGSOFT.COM 972.375.18127 16

SLANGSOFT WWW.SLANGSOFT.COM 972.375.18127 56

SOFTWIRED INC. WWW.JAVAMESSAGING.COM (41) 1.445.2370 7

SUN MICROSYSTEMS INC. WWW.SUN.COM/SERVICE/SUNED/JAVA2 800.422.8020 4

SYBASE INC. WWW.SYBASE.COM 800.8.SYBASE 25

THE THEORY CENTER WWW.THEORYCENTER.COM 888.843.6791 71

TIDESTONE TECHNOLOGIES WWW.TIDESTONE.COM 800.922.9665 31

UNIFY CORPORATION WWW.EWAVECOMMERCE.COM 800.GO.UNIFY 13

VISICOMP, INC. WWW.VISICOMP.COM 831.335.1820 15

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 66

VSI WWW.VSI.COM/BREEZE 800.556.4VSI 41

WORLDWIDE INTERNET PUBLISHING WWW.WIPC.NET 800.785.6170 65

ADVERTISINGINDEX

Advantsoft
www.avantsoft.com

Develop
Mentor

www.develop.com/courses/ijava.htm

Java COM

84 OCTOBER 1999

Java
Business Conference

www.javabusinessconference.com

85OCTOBER 1999

Java COM

Career
Opportunities

Java COM

86 OCTOBER 1999

Career
Opportunities

87OCTOBER 1999

Java COM

Career
Opportunities

Java COM

88 OCTOBER 1999

Career
Opportunities

89OCTOBER 1999

Java COM

Career
Opportunities

Java COM

90 OCTOBER 1999

Career
Opportunities

91OCTOBER 1999

Java COM

Career
Opportunities

Java COM

92 OCTOBER 1999

Career
Opportunities

93OCTOBER 1999

Java COM

IMI Systems Inc.
www.imisys.com

Java COM

94 OCTOBER 1999

T
here are many reasons for Java’s success.
Although heavily debated and discussed, the
“Write Once Run Anywhere” aspect of Java is
one of the reasons. A sometimes less-heralded
reason is Java’s superior object-oriented
implementation. I don’t view myself as an OO

expert, but I’ve observed the rapid market acceptance of Java as
compared to other OO languages. In the past these languages took
many years to enter the mainstream (C++) or remained in a niche
market (SmallTalk). The creators of Java were able to stand on the
shoulders of others that had created OO languages; they were able to
capitalize on the tremendous strength of OO programming and
avoid the pitfalls. With Java, they created a language and platform
that’s allowing OOP to rapidly enter the mainstream.

With my background in database technology, I’ve seen similar sea
changes in databases. Before relational databases there were network
and hierarchical databases. Relational databases were the new kid on
the block, and it took Oracle’s success to show that these early data-
base models could be replaced. In the mid to late eighties, some
believed that relational databases would be
replaced by another model – object-oriented
databases. In Silicon Valley hundreds of mil-
lions of dollars were invested in OODBMS
start-up companies. In the last ten years the
market has made an overwhelming choice.
Today RDBMS is a multibillion-dollar ($10 bil-
lion+) market and OODBMS is only a $200–300
million market. OODBMS companies have
found themselves relegated to a niche market
providing very specialized solutions.

Now with Java and OOP entering the main-
stream the proponents of OODBMS are hang-
ing their hat on promoting the belief that OOP
requires an OODBMS. They’re hoping that
Java programmers will believe that the same
advantages that are derived from OOP will
also come from using an OODBMS.

What’s missing here is that one of Java’s
strengths is its ability to connect the old world
with the new. The new world includes appli-
cation servers, mobile computing and Inter-
net devices. The old world contains a vast
amount of relational data, among other
things. Sun has spent a lot of effort on JDBC
because they understand the importance of
providing Java programmers with the ability to access the vast
amount of relational data available. With JDBC Java programmers
can access all the world’s relational data, and as they move from pro-
ject to project, or job to job, the skills they acquire in working with an
RDBMS are easily transferred. Contrast this with working on a pro-
ject that uses an OODBMS. The likelihood that the next project or job
will use an OODBMS are about 100 to 1 based on the relative market
sizes. Since OODBMSs are in a niche market, the Java programmer
who spends time on an OODBMS application will be too.

The question to be asked is: “Why has RDBMS maintained a dom-
inant position for over 20 years? Is it because Larry Ellison is a

tremendous marketeer and has managed to fool us all?” Larry is
good but not that good. The answer may be too simple to believe.
The relational model has stood the test of time simply because it’s
good. Most of the world’s data isn’t terribly interesting or complex
and fits quite nicely into simple rows and columns. The complexity
comes from the ever-evolving use of the data. RDBMS with SQL
allows the use of the data to evolve in unpredicted ways. Yes, there
are special situations where an OODBMS approach works best, such
as parts explosions, CAD or mapping. These special cases can now
be solved with OO extensions to the relational model found in the
SQL ’99 standard or with object-to-relational mapping tools.

There are many reasons for the success of RDBMS over OODBMS.
Unlike OODBMS the data relationships don’t have to be decided
ahead of time. As the uses of data evolve the RDBMS can adapt
through the support of joins and other dynamic aspects of SQL, and
by easily altering the relational schema. SQL provides an industry-
wide standard for accessing and managing data. There’s no equiva-
lent industry-accepted query language for OODBMS. One must
write a procedural program for every new use of the data. The

RDBMS market is supported by a large after-
market that includes application development
tools, report generators, design tools, etc. No
such aftermarket exists for the OODBMS mar-
ket. The list could go on.

We all want Java to succeed and it will. Java’s
success will grow as we bridge Java to the high-
ly successful RDBMS market. Java OODBMS
applications will find themselves in the
OODBMS niche. These applications will only
detract from the momentum of Java because
they’ll be isolated.

At PointBase we strongly believe in this, so
we want to help every Java programmer learn
how to write Java applications that use an
RDBMS. On our Web site is a free developers’
version of our 100% Pure Java database. A Java
programmer can get up and running in min-
utes and try their hand at developing an
RDBMS application. It’s compatible with Ora-
cle but doesn’t require the complexities or
expense of buying and installing Oracle. We
encourage Java programmers to download this
free PointBase developers’ version so they can
learn how to use RDBMS with Java. On our Web
site we also host Developers Central to help

answer questions on how to build RDBMS applications in Java. In
our own way we’re doing our part to help Java succeed by connecting
Java to the lucrative world of relational data.

AUTHOR BIO
Bruce Scott, president, CEO and founder of PointBase, is a leader in the area of enterprise and
embedded database architecture and product development. A cofounder of Oracle in 1977, Bruce
cofounded Gupta Technology in 1984, pioneering the notion of the small footprint database server for
Intel-based platforms.

Java OOP Means OODBMS—“Not”
WRITTEN BY BRUCE SCOTT

bruce.scott@pointbase.com

I M H O

Why has RDBMS
maintained a

dominant position
for over 20 years?

Is it because
Larry Ellison is a

tremendous
marketeer and

has managed to
fool us all?

‘‘

’’

95OCTOBER 1999

Java COM

Silverstream
www.silverstream.com

Java COM

96 OCTOBER 1999

KL Group
www.klgroup.com/collect

